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Introduction 

Let R be an associative ring with identity and let us denote by modoR the category 
of all unital right R-modules. For each hereditary torsion theory z for mod-R and 
each M e  mod-R Goldman introduced in [5] the concept of a z-composition series 
of M as a generalization of composition series. And it was shown in [5] that M has 
a z-composition series if and only if M satisfies the a.c.c, and d.c.c, on z-closed 
submodules, and all z-composition series of M, if there exist, have the same length. 
Any hereditary torsion theory for mod-R is defined (i.e., cogenerated) by some 
injective right R-module; so if z is cogenerated by an injective right R-module E, 
then any z-composition series of M can be regarded as a composition series relative 
to a module E. 

In this paper for each (not necessarily injective) right R-module U we will 
introduce the concept of a U-composition series of any right R-module M. And we 
will generalize those results which have been obtained in [5]. In Section 2 we will 
show that when U is M-injective, M has a U-composition series if and only if M 
satisfies the a.c.c, and d.c.c, on U-closed submodules, i.e., {LR C_MR I M/L is U- 
torsionless}, and all U-comosition series of M have the same length (Theorem 2.6 
and 2.8, respectively). Moreover, if U is a quasi-injective, M-injective right R- 
module with endomorphism ring S = End(UR), we will show in Section 3 that there 
exists a kind of mutual relation between U-composition series of M and composition 
series of sHom(MR, UR). In particular, it will be proved that MR has a U-com- 
position series of length n if and only if sHorn(MR, UR) has a composition series 
of length n (Theorem 3.4). And in Section 4 we will show some necessary and 
sufficient conditions for sHorn(MR, UR) to be coperfect, noetherian, and of finite 
length, respectively, in case U is a quasi-injective right R-module with S = End(UR) 
(Theorem 4.1, 4.3 and 4.5, respectively). 
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1. Preliminaries 

For any hereditary torsion theory z for mod-R and any M e  mod-R a chain of 
R-submodules 

g=go gl  gn= Tgg) 

where TT(M) denotes the z-torsion submodule of  M, is called a z-composition 
series of  M if  Mi_ 1/Mi is z-cocritical, i.e., M i_ l/gi is z-torsionfree and any proper 
homomorphic  image of Mi_ l/gi is z-torsion for i = 1,.. . ,  n. 

For M, U e  mod-R, M is said to be U-torsion if  Horn(MR, UR)=(0), and M is 
said to be U-torsionless if  M R ~  II fir (a direct product of  copies of U). Clearly if  
M is U-torsion and N is U-torsionless, then Hom(M R, NR) = (0). An R-submodule 
L of M is said to be a U-closed submodule of M if  M / L  is U-torsionless. The next 
lemma can be proved without much difficulty. 

Lemma 1.1. For L,M, U e  mod-R with L c_M let us set M * =  Hom(M R, fiR). Then, 
L is a U-closed submodule o f  M i f  and only i f  

L = ann M X= {m e M f(m) = 0 for all f e  X }  

for some subset X o f  M *  in fact, 

L = ann M annM, L 

= {m e M I f ( m )  - 0 for  all f ~  M* such that f (m' )  = 0 for  all m' ~ L}. 

Hence [, = annM annM. L is smallest among all U-closed submodules o f  M which 
contain L. 

Throughout this paper zu(M) always denotes annMM* = {m e M [f(m) = 0 for all 
f e M * } ,  where M*=Hom(MR, UR). According to Lemma 1.1, zu(M) is the 
smallest U-closed submodule of  M. A chain of R-submodules of M, M0 D M1 D--. D 
Mn is said to be a U-chain of  length n if M i_ 1/29//is not U-torsion for i = 1,..., n. 
If  M has a U-chain of length n, then we denote it by U-dim M R >_ n. If there is not 
any U-chain of  length n in M, we denote it by U-dim M R Z n. If  U-dim M R >_ n and 
U-dim MR ~: n + 1, then we denote it by U-dim MR = n. 

Definition. A non-zero right R-module V is said to be U-cocritical if V is U-torsion- 
less and any proper homomorphic image of V is U-torsion. A chain of  R-sub- 
modules of  M 

M=MoDMI D... DMn=zu(M) 

is called a U-composition series of  M if Mi_ l/Mi is U-cocritical for i = I,. . . ,  n. 

In case U is a cogenerator in mod-R, V is U-cocritical if and only if V is simple. 
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Hence in such case a U-composition series of M is nothing but a composition series 

of  M. 
As usual, M is said to be N-injective if any R-homomorphism of any R-sub- 

module of N into M can be extended to an R-homomorphism of N into M. 

Notation. T(M) = { N e  mod-R IM is N-injective}. 

M i s  said to be quasi-injective if and only if M e  ~(M),  and Mis  injective if and 
only if ~ ( M ) =  mod-R. The next lemma is very useful. 

Lemma 1.2 (Azumaya [1]). ~P(M) is closed under taking submodules, homomorphic 
images and direct sums. 

Throughout this paper any homomorphism will be written on the side opposite 
the scalars and End(MR) denotes the endomorphism ring of  M for each M e  mod- 
R. Thus, if  S = End(MR), we can regard M as a left S-module for each M e  mod-R. 
And XC Y ( Y D X )  always implies Xc_ Y and X#: Y for any two sets X and Y. 

2. U-composition series 

Throughout this section we assume that every module is a right R-module. 

Lemma 2.1. We have the following assertions. 
(1) Let (0)--,X--, Y be any exact sequence with Ye  ~P(U). I f  Y is U-torsion, then 

so is X. 
(2) I f  X e  ~P(U), then zv(X) is U-torsion. 
(3) Let (O)~X W--~ Y ~, Z~(O) be any exact sequence with Ye ~P(U). I f  X and 

Z both are U-torsionless, then so is Y. 

Proof. (1) Since U is Y-injective, we get the exact sequence Hom(YR, UR)- '  
Hom(XR, UR)~(O). Since Hom(YR, UR)=(0) by the assumption, we have 
Hom(XR, UR)= (0), as desired. 

(2) If rv(X) is not U-torsion, there is a non-zero R-homomorphism 
f :  r v ( X ) - '  U. Since U is X-injective, f can be extended to h : X ~  U. Then there is 
an element x in rv(X) such that h(x)=g O. This contradicts rv(X)= annx  X*, where 
X* = Hom(XR, UR). 

(3) Let y be any non-zero element of  Y. If ~0(y) ~= 0, there is an R-homomorphism 
h : Z ~ U  such that h~(y)~O. Hence f=hq~: Y ~ U  carries y onto a non-zero ele- 
ment of U. Next, assume ~(y) = 0. Then y E Ker ~ = Im ~. Hence there is an element 
x in X such that ~ (x )=y .  Since X is U-torsionless, there is an R-homomorphism 
g : X - ~ U  such that g(x)~O. Then, since U is Y-injective, there is an R-homo- 
morphism f :  Y-~U such that g=f~.  Therefore f (y)=f~(x)=g(x)~O. Thus, we 
conclude that Y is U-torsionless. 
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Lemma 2.2. Let M e  ~(U). I f  

(a) MoDM1D...DMn 

is any U-chain o f  length n in M, then there is a chain o f  U-closed submodules M[ 
o f  M with length n as follows: 

(b) M~DM;D.. .  DM~. 

Proof. Let us put M~/Mo = Tu(M/Mo). Then M/M~ is U-torsionless. Since Mo/M 1 
is not U-torsion, so isn't M~/M l by Lemma 1.2 and (1) of Lemma 2.1. Next, let 
us put M~/Ml = zu(M~/MI). Then M~/M1CM~/MI since Hom((M~/MI)R, (JR) :g 
(0), and M~/M~ is U-torsionless. Since M/M(  e ~P(U) by Lemma 1.2, we can easily 
verify that Ml' is U-closed in M by using (3) of Lemma 2.1. And, since M1/ME is 
not U-torsion, so isn't M~/M2 by the same reason as above, let us put M~/M 2 = 
zu(M( /g2).  Then M~ /M2 C M( /M2 since Hom((M~ /g2)R, UR) @ (O), and M( /M~ is 
U-torsionless. Therefore, since M/M~ e ~(U) by Lemma 1.2, and since M~/M~ and 
M/M~ each are U-torsionless, M~ is U-closed in M by (3) of Lemma 2.1. By re- 
peating this argument, if we put M[/M i --"¢u(gi'_ 1/gi) for i = 1, ... ,n, at last we 
have a chain M~ D M1' D-.-D M~ such that M[ is a U-closed submodule of M for 

each i. 

Making use of  Lemma 2.2, we can easily verify that when V is U-torsionless and 
Ve ~(U), V is U-cocritical if and only if U-dim VR = 1. 

Lemma 2.3. Let M be a U-torsionless right R-module which belongs to ~(U) and 
let N be a non-zero R-submodule o f  M. Then we have the following assertions. 

(1) I f  M is U-cocritical, so is N. 
(2) I f  M / N  is U-torsion and N is U-cocritical, then M is U-cocritical, too. 

Proof. (1) In this case U-dim M =  1. Since N is U-torsionless, clearly U-dim N =  1. 
On the other hand, since N e  ~(U), N is U-cocritical. 

(2) We want to show U-dimMR = 1. Suppose U-dim MR>_2. Then there is a 
chain of length 2, MoDM 1DM2 such that each Mi is U-closed in M by Lemma 2.2. 
Let us put N i = N N M i  for i=0,  1,2. Since N/Ni=N/ (NNMi)=(N+Mi) /Mi  and 
M / M  i is U-torsionless, N / N  i is also U-torsionless. Since U-dimN R = 1 by the 
assumption, either N O =NI or N 1 = N2 holds. Now, assume No = N1. Then 

Mo/M1 ~ (Mo/No)/(M1/NI) --" (Mo/ (N 0 Mo)) / (M 1 / (N  NMI) ) 

~-- ((N + Mo)/N)/((N + MI) /N)= (N + Mo)/(N + M I). 

And, since M / ( N + M I ) e  ~(U) by Lemma 1.2 and M/(N+MI)  is U-torsion by the 
assumption, Mo/MI (=(N+Mo)/(N+MI))  is also U-torsion by (I) of Lemma 2.1. 
But, since Mo/Ml is U-torsionless, we get Mo=MI, which is a contradiction. 
Similarly, Nl = N2 also induces a contradiction. Hence we have U-dim MR = I, and 
so M is U-cocritical. 
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For M e  mod-R let us denote by .~(M) the modular lattice consisting of all R- 
submodules of M. For each L ~ ~ (M)  let us put LC/L = zu(M/L). Then L c is 

smallest among all U-closed submodules of M which contain L, that is, L¢= 
annm annM, L, where M* = Hom(MR, UR), according to Lemma 1.1. Hence L c = L 
if  and only if L is a U-closed submodule of M. And the intersection of an arbitrary 
family of U-closed submodules of M is again U-closed in M. Indeed, if  {La }~ ~A is a 
family of U-closed submodules of  M, there is an R-monomorphism: M/Na~A La--' 
I'L~aM/La. But, since [L~AM/La is U-torsionless, so is also M/Na~AL ~. That 
is, NasA L~ is U-closed in M. 

Lemma 2.4. Let M e  ~P(U). I f  L and N are R-submodules o f  M, then we have 

L ¢ n N ~ = (L n N) ~. 

Proof. Since L n N _c L, (L N N)  ¢ c_ L c. Similarly, (L N N) c c_ N c. Hence (L n N) c c_ 
L c n N c. 

Next, we want to show first LINL~c_(LIAL2) c for any two R-submodules 
L1 and L2 of M. Let x e L l n L ~ .  Define a map v/ '(LI+L2)/L2~M/(LIAL2) 
by setting q/(x I + L2) = xl + L1 n L 2 for all x I e L 1 . And let t~ e (M/(L 1 n L2) )* = 
Hom((M/LI AL2))R, fiR). Since x e Ll nL~ C_ Ll, x + LI AL2 = ~(x + L2). Then we 
have 

a(x + L 1 N L2) = ot ~ ( x  + L2) = 0. 

For, suppose t ~ g ( x + L 2 ) : # 0 .  Since U is M/LE-injective by the assumption and 
Lemma 1.2, a~v can be extended to fl : M / L  2-~ U. Hence B(x + L2) = a~, (x  + L2) :# 0. 

That  is, x + L2 ¢i annM/L2(M/L2)*= L~/L2, where (M/LE)*= Hom((M/LE)R, UR) , 
and so xe~L[, which contradicts the choice of x. Therefore a(x+ L1 A L E ) =  0 for all 
a~(M/(LIAL2))*. That  is to say, 

x + L 1 n L 2 E annM/(L l n L2) (M/(L 1 n L 2))* = (L 1 n L 2)c/(L 1 n L 2). 

Thus, we conclude x e  (L 1AL2) c. Hence we have LI AL~ c_ (Ll NL2) ¢, as desired. 
Now, putting L I = N  and L2=L, we get LCANc_(LAN) c and so (LCnN)cc_ 

( L A N )  c. Next, putting LI = L  c and L2=N, we get LeANt  c_ (LEAN) c. Therefore 
we have that LcNN¢c___(LNN) c and so LCANC=(LAN)C. Thus, the proof of 
Lemma 2.4 is completed. 

Let us denote by ~'v(M) the set of  all U-closed submodules of  M, that is, let us 
set ~'u(M) = {L R ~ MR[LC= L}. Since Vu(M) is closed under taking intersections, 
we can give a complete lattice structure to ~u(M) by setting 

( ray A {L,I}=NL; ,  and V {L,I}= L,I 

for every subset {L;~}~.¢ A of ~'u(M). Moreover, we have the next proposition. 



20 T. Izawa 

Proposition 2.5. Let M e  ~(U), that is, let U be M-injective. Then Vu(M) is a 

complete modular lattice. 

Proof. First, notice that if(M) is a modular lattice. Let K , L , N ¢  ~u(M) with 
K c_ L. Then we have that 

L A (K  X/ N )  = LC fh (K  + N )  c 

= (L rl (K+N))  c by Lemma 2.4 

= (K + (L nN)y = K v  (L AN). 

Hence Tu(M) is modular, as desired. 

Thus, we have seen that ~u(M) is a complete modular lattice which contains the 
greatest element M and the smallest element zu(M) in case U is M-injective. In 
general, if A e is a modular lattice with greatest element 1 and smallest element 0, any 
maximal chain linking 1 to 0 in ~ i s  called a composition chain of ~. Next, let 
M e  ~u(U). Then any U-composition series of M , M = M o D M  l D...  DMn = rv(M) is 
a composition chain of ~v(M). Indeed, since M / M i ,  M i_ I /M i E ~(U)  by Lemma 
1.2, we can easily show that Mie  ~v(M) for each i by using (3) of Lemma 2.1 
repeatedly and that this chain is maximal in Tu(M) by using U-dim )Vii_ l/Mi = 1 
for each i. Conversely, we can also show that any composition chain of Tv(M) is 
a U-composition series of M by using Lemma 2.2 and (3) of Lemma 2.1. 

Theorem 2.6. Let M e  ~(U). Then M has a U-composition series i f  and only i f  
~u(M) is noetherian and artinian, that is, M satisfies the a.c.c, and d.c.c, on U- 
closed submodules. 

Proof. This follows from Proposition 2.5 and [9, Chap. III Proposition 3.5]. 

Corollary 2.7 (Goldman [5]). Let r be any hereditary torsion theory for  mod-R and 
let M e  mod-R. Then M has a r-composition series i f  and only i f  M satisfies the 
a.c.c, and d.c.c, on r-closed submodules. 

Theorem 2.8 (A generalization of the Jordan-H61der Theorem). Let M e  ~P(U). 
Then any two U-composition series o f  M, i f  there exist, are equivalent in ~'u(M). 
That is to say, i f  

and 
Mn = MoD MI D "" D Mn= ru(M) 

MR = NoD N1D "" D Nr= ru(M) 

each are U-composition series o f  M, then we have that n = r and there is a permuta- 
tion Q o f  {1, ..., n} such that the intervals [M i, Mi_ 1] and [Ne(i), No(i)_ 1] are projec- 
tire in ~u(M) in the sense o f  [9, Chap. III] for  i = 1,..., n. 
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Proof. This follows from Proposition 2.5 and [9, Chap. III Corollary 3.2]. 

Remark. If we consider the case where U is an injective cogenerator in mod-R in 

Theorem 2.8, we get the classical Jordan-H61der Theorem. 

Corollary 2.9 ([5]). Let z be any hereditary torsion theory for  mod-R and let 
M e  mod-R. Then any two z-composition series of  M, i f  there exist, are equivalent. 
In particular, all z-composition series o f  M have the same length. 

Proof. If z is cogenerated by an injective right R-module E, any z-composition series 
is nothing but an E-composition series. 

Let M e  ~P(U). Then, if  M has a U-composition series of  length n, we will denote 
it by U-length MR = n. If M has no U-composition series, we will denote it by U- 
length MR = co. If  U-length MR = n < oo, we will call M a module of finite U-length. 
Next, let z be a hereditary torsion theory for mod-R and let M e  mod-R. Then, if  
M has a z-composition series of  length n, we will denote it by z-length MR = n and 
call  M of finite z-length. Otherwise, it will be denoted by z-length MR = oo. 

Theorem 2.10. Let M e  ~P(U). I f  M has a U-composition series o f  length n, then any 
U-chain o f  M has finite length t and t <_ n. In particular, any chain o f  U-closed sub- 
modules o f  M can be refined to a U-composition series o f  M. 

Proof. Since U-length MR = n, the length of any composition chain of ~u(M) is 
equal to n by Theorem 2.8. Let LoDL l D - - -  D L  t be any U-chain of  M. Then there 
exists a chain of  length t, L~DL'I D --- DL~ in ~u(M) by Lemma 2.2. According to 
[9, Chap. III Proposition 3.3], this chain can be refined to a composition chain of 

~u(M). Therefore we get t<_ n. 

Theorem 2.11. Let M e  ~P(U). M has a U-composition series o f  length n i f  and only 
i f  there is a maximal U-chain o f  length n in M. That is to say, U-length MR = 
U-dim MR. 

Proof. Necessity. If M = M o D M I D . . . D M n = z u ( M )  is a U-composition series of  
length n, this is a U-chain of  length n. On the other hand, according to Theorem 
2.10 this is a maximal  U-chain of M. 

Sufficiency. Assume that there is a maximal U-chain of length n in M;  say 

(a) Mo D MI D "" D Mn. 

Then by Lemma 2.2 we get a chain of  U-closed submodules M: of M as follows: 

(b) M~DM;D. . .DM~.  

Since (a) is maximal,  M/Mo is U-torsion; so M/M~ is U-torsion, too. This as well 
as the fact that M~ is U-closed in M, implies M =  M~. Next, let us put N O = M 0 f3341'. 
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Then Mo/No=(Mo+M;)/M[, which is U-torsionless and not equal to (0). For, 
if (Mo+M[)/M;=(O), MoO_M;. And hence M/M; is also U-torsion. So we get 
M;  = M, which is a contradiction. Next, since U-dim Mo/MI = 1 by the maximality 
of (a), U-dimMo/No= 1. So U-dim(Mo+M[)/M;= 1. Therefore (Mo+M;)/M; is 
U-cocritical. On the other hand, since M~/Mo = ru(M/Mo) is U-torsion by (2) of 
Lemma 2.1, MU(Mo-(M ~) is U-torsion, too, as a homomorphic image of MUMo. 
Hence M~/M; is U-cocritical by (2) of Lemma 2.3. Similarly, if we put 
NI=MICIM~, (MI+M~z)/M~ (=MI/N1) is U-cocritical by the same reason as 
above. And M;/M1 = zu(M~/M1) is U-torsion by (2) of Lemma 2.1. And, since 
M;/(M1 + M~) is a U-torsion module as a homomorphic image of M[/M1, M;/M~ is 
U-cocritical by (2) of Lemma 2.3. Repeating this argument, we have that M;_ 1/M; 
is U-cocritical for i=l, . . . ,n.  Next, since Mn/(MnNru(M)) (=(Mn+rv(M))/ 
rv(M)) is U-torsionless and (a) is maximal, we have Mn=M~Nzu(M); so 
Mn c__ ru(M). Since M,~ is U-closed in M, ru(M) c_ M,~. And, since ru(M,~_ 1/M~) = 
M;,/M~, M~ is smallest among all U-closed submodules of M,~_l which contain 
M~. Hence we have rv(M)=M,~. Therefore M has a U-composition series of 
length n as follows: 

(c) M=M~DM;D". DMn = ru(M). 

This completes the  proof of Theorem 2. II. 

Theorem 2.12. Let (O)-,A ~B  ~ C ~ ( 0 )  be any exact sequence of right R-modules 
with Be ~P(U). Then we have 

U-length BR = U-length A R + U-length CR. 

Proof .  First, suppose U- lengthA = r and U-length C = s .  Let 

(a) ru(A)=AoCAIC ""CAr=A 

and 

(b) re(C) = Co C CI C-.- C Cs = C 

be U-composition series of A and C, respectively. Let us put Ar+j = ~-l(cj) for 

j = O, I,..., s. Then we get a chain 

(c) z u ( A ) = A o C A 1 C " ' C A r = A  C_Ar+oCAr+IC...CAr+s =B. 

Then A i / A  i_ 1 and Ar+j/Ar+j- 1 both are U-cocritical for i = 1, ..., r and j = 1, ..., s. 
Since A i / A  i_ 1, Ar+j/Ar+j- 1 e ~(U) by Lemma 1.2, we have U-dim A i / A  i_ 1 = 1 = 
U-dimAr+j/Ar+j_l for all i and all j .  Clearly zu(Cl)c__ru(C). Next, suppose 
x e  C1 and x ¢  zu(C1). Then there is an R-homomorphism a : C1 --* U such that 
a(x)~0.  Since U is C-injective by Lemma 1.2, a can be extended to ~:CR~UR. 
Hence xC.anncC*=ru(C), and so ru(C)c_zv(CI). Hence "Cu(CI)="fu(C ). 
Now, ~ induces the R-isomorphism ~ : At+ 1/A ~ Cl with ~(Ar + o/A) = ru(C) and 
~(zu(Ar+ 1/A)) = rv(C1) since Ar+ 1/A e ~P(U). Thus, we get Tu(Ar+ 1/A) = Ar+ o/A. 
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Hence U-dim A t .  1/A = U-dim(At.  1 / A ) / T u ( A r +  1 / A )  ~-- U-dim(Ar.  l / A ) / ( A r ,  o/A) = 
U-dim C1/Co-- 1. Thus, 

(c') ru(A)=AoCAIC. . .CArCAr+IC. . .CAr+s=B 

is a maximal U-chain of length r + s. Therefore U-length B = r + s = U-length A + 
U-length C by Theorem 2.11. 

Conversely, suppose U-length B =  n. According to Theorem 2.10 and 2.11, U- 
length A = r for some integer r_< n. Let 

(d) zu(A) =AoCAI C . . .  C A  r =A 

be a U-composition series of  A and let 

(e) AoCA1C'"CAr=Ar+oCAr+IC'"CAr+ s 

be a refinement of  (d) which is a maximal U-chain of B. Then n - r + s by Theorem 
2.11. If  we put -Ar+j =Ar+j/A for j = 0 ,  1, . . . ,  s, then we have a maximal U-chain of  
B=B/A as follows: 

(f) (0) ---~.e~r+0 C . ~ r +  l C "'" C A r +  s. 

Hence we have U-length C =  U-length/~=s  by Theorem 2.11. Therefore U- 
length B = n = r + s = U-length A + U-length C. Thus, the proof  of Theorem 2.12 is 
completed. 

Corollary 2.13. Let M e  ~P(U) and let M be of  finite U-length. Then for any two R- 
submodules L and N of  M we have 

U-length(L + N)  + U-length(L N N)  = U-length L + U-length N. 

Proof. Applying Theorem 2.12 to the following two exact sequences 

(O)-}L--*(L + N ) ~ ( L  + N) /L  ~ ( 0 )  
and 

(O)~ L NN--} N ~ N/(L NN)--}(O), 

we can easily get the required equality. 

3. A characterization of modules of  finite U-length 

In this section we will give a new type o f  characterization of  a module M of  finite 
U-length in case Uis a quasi-injective, M-injective right R-module. For M, U e  mod-R 
with S=End(UR) let us set sM*= sHorn(MR, UR). As usual, we put 

annM X= {m ~M[f(m)=O for all f ~X} 

for any subset X of  M* and 

annM.L={feM*lf(m)=O for all m~L} 
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for any subset L o f  M. Clearly annM X is an R-submodule of M and annM, L is an 

S-submodule of M*. 

L e m m a  3.1. Let Ve  ~P(U). I f  U-length VR = 1, then V/zu(V) is U-cocritical. 

P r o o f .  It is clear by the assumption and the definition of a U-composition series. 

L e m m a  3.2.  Let U, Ve ~'(U) with S = E n d ( U R )  and let sV*=sHom(VR, UR). Then, 
s V* is simple i f  and only i f  U-length V R = 1. 

P r o o f .  Sufficiency. The exact sequence (0)~ r v ( V ) ~  V ~  V/rv(V)~(O) induces the 
exact sequence of left S-modules as follows: 

(O)~ Hom(( V/rv( V))R, UR)~Hom(VR, UR)--*Hom(rt:(V)R, UR)~(O), 

because U is V-injective. By (2) of Lemma 2.1, rv(V)  is U-torsion. Hence 
Hom(rv(V)R, UR)= (0). Therefore we have Hom((V/ru(V))R, U~)= Hom(VR, UR). 
Now, since Ve ~(U) and U-length VR = 1, V/rv(V)  is U-cocritical by Lemma 3.1. 
Hence we may assume that V is U-cocritical without any loss of generality. Let 
O=/=aeV*, and suppose Kera~=(0). Then I m a = V / W  for some non-zero sub- 
module W of V. Since V is U-cocritical, V / W i s  U-torsion. On the other hand, Im a 
is U-torsionless as a submodule of U. Hence Im a=(0) ,  which contradicts a#=0. 
Hence we have Ker a = (0). That is, every non-zero R-homomorphism of V into U 
is a monomorphism. Now, let a, Be V* with a~=0. Since UR is quasi-injective, 
there is an R-homomorphism s: U ~  U such that fl=sa. Hence s V*= Sa. That is, 
s V* is simple. 

Necessity. Assume that s V* is simple. Then VR has exactly two U-closed sub- 
modules V= ann v(0) and z v ( V ) = a n n v V *  by Lemma 1.1. Hence U-length VR=I 
by Lemma 2.2. This completes the proof of Lemma 3.2. 

L e m m a  3.3. Let U be a quasi-injective right R-module with S = End(UR) and let us 
set sM*=sHom(M R, UR) for each M~mod-R.  Then for any finitely generated 
S-submodule X o f  M* we have 

X = annM, annM X. 

P r o o f .  Since s X is finitely generated, we can put X =  Ei:~ S°ti, where t~ i ~M* for 
i = 1,...,  n. Define a map ~ : M~ ~ ( ~  UR (the direct sum of n copies of UR) by 
setting ¢~(m)=(ctlm, a2m,. . . ,anm) for all m e M .  Then K e r ~ = a n n M X .  Hence 

induces the R-monomorphism h : M / a n n M X - + ~ n u .  Now, clearly Xc_ 
annM. annu X. Next, we want to show annM. annM X c X. Let B be any element of  
annM. annM X. And, define f :  M/annM X-*  U by setting f (m + annM X) =fl(m) for 
all m ~ M. Then we have the commutative diagram with exact row as follows: 
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(0) ~ M / a n n  M X 

f 

U 

h n 

because (~)n Ue ~P(U) by Lemma 1.2. Since we can regard 

Uom UR, =O)Hom(UR, UR)=•S,  

we are able to put g =  (sl, s2, . . . ,  sn), where s ic  S for each i. Hence we have that 

fl(m) =f(m + annM X)  = gh(m + ann M X)  

= gt~(m) = g(al m, a2m,. . . ,  an m) 

n 

= ~ siai(m ) for all m ~ M .  
i=1 

Hence 
/7 n 

~= E Slain" E Sai - 'X .  
i = l  i = l  

Thus, we get annM. annM X c_ X. Therefore we have X = annM. ann M X. 

We are now ready to prove our main result. 

Theorem 3.4. Let U, M e  ~P(U), that is, let U be a quasi-injective, M-injective right 
R-module with S = End(UR). And  let us set sM*= sHorn(MR, UR). I f  

(a) MR = V ... M .=  Tu(M) 

is a U-composition series o f  length n, then 

(a*) ( O ) = X o C X I C . . . C X n = s M *  

where X i = aIlnM, M i f o r  each i, is a composition series o f  length n. Then i f  we put  
M:= ann M X i for  each i, 

(a**) MR=M~DM;D. . .  DMn=*:u(M) 

is equal to (a). 

Conversely, i f  

Co) (O)=XoCXIC_. . .CX,=sM* 

is a composi t ion series o f  length n, then 

Co*) M R = M o D M  1D... DMn=v:u(M ) 

where Mi = annM Xi fo r  each i, is a U-composition series o f  length n. Then i f  we 
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put X /=  annM, Mi for  each i, 

(b**) ( O ) = X ~ C X ; C . . . C X ~ = s M *  

is equal to (b). 
In particular, we have 

length s M* = U-length MR. 

Proof.  First, assume that a chain (a) is a U-composition series of length n. Since 
U is M-injective, we can easily see that every Mi is U-closed in M by using (3) of 
Lemma 2.1 repeatedly. Hence Mi =annM annM. Mi for i = 0, 1,..., n according to 
Lemma 1.1. So, if we put Xi = annM, Mi for each i, we get a chain of S-submodules 
of M* with length n as follows: 

(a*) (O)=XoCXIC...CXn=sM*. 

Next, we want to show that (a*) is a composition series of s M*. Let us de- 
fine a map ¢/: Xi-~Hom((M i_ I/Mi)R, fiR) by setting [(o)~}(m +Mi) = o(m) for all 
o ~ Xi and all m ~ Mi_ 1. Then clearly ¥ is an S-homomorphism and Ker ¢/= X i_ 1. 
Hence ~ induces the S-monomorphism ~t:Xi/Xi_I-~Hom((Mi_I/Mi)R, UR). 
But, since Mi_I/MiE~[I(U) by Lemma 1.2 and Mi_I/M i is U-cocritical, 
sHom((Mi_l/Mi)R, fiR) is simple for each i by Lemma 3.2. Therefore s (Xi /X i_ l )= 
sHom((Mi_l/Mi)R, UR); so s(Xi /Xi_l)  is simple for each i. Hence (a*) is a com- 
position series of sM*. And, since M/=  annM Xi = annM annM. Air/= Mi for each i, 
(a**) is equal to (a). 

Conversely, assume that a chain (b) is a composition series of s M* with length 
n. Then, since every X i is a finitely generated S-submodule of M*, we have 
Xi =annM.annMXi for each i by Lemma 3.3. So, if we put Mi =annMXi for 
i = 0, 1, . . . ,  n, we get a chain of length n linking M to zt:(M) as follows: 

(b*) M = M o D M I D . . . D M n = r u ( M  ). 

Next, we want to show that M i_ 1/M/is U-coeritical for each i. For this purpose we 
will first show that s(annM,,Mi) (=sHom((Mi_I/Mi)R, UR) ) is simple, where 
M/*l = Hom((Mi_I)R, UR). Let a, ,8eannM,~M i with a~:0. Since Uis  M-injective, 
a (resp. ]/) can be extended to t~ (resp. B) of M*. Then, since ~t, B~ annM. Mi =Xi 
and ~t ~ almM.M i_ l=Xi_ 1, and since s(Xi /Xi-x)  is simple, there exists an element 
s of S such that ~ - s~t ~ Xi_ 1 = annM. Mi- 1. Hence (fl - sa)Mi_ i = ( f l -  s~)Mi- l = 
(0). Therefore we have B=sa;  so s(annM?~_~Mi)=Sa. Thus, S(annM?~_~Mi), and 
hence sHom((Mi_l/Mi)R, UR)is simple, as desired. Hence U-lengthMi_l /Mi=l  
by Lemma 3.2. On the other hand, since Mi is U-closed in M by Lemma 1.1, 
Mi_ l /Mi  is U-torsionless. Therefore Mi_ I/Mi is U-cocritical for each i. Thus, (b*) 
is a U-composition series of M R. Moreover, since X[ = annM. M i = annM. ann M X i = 
Xi for each i, (b**) is equal to Co). This completes the proof of Theorem 3.4. 

CoroH~'y 3.5. Let U, S, M and M* be the same as in Theorem 3.4. Suppose 
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U-length MR = n < 00. Then we have the fol lowing statements. 

(1) For any R-submodule L o f  M let us pu t  X = a n n M . L .  Then 

and 

s (M/L )*  = sHom((M/L)R ,  fiR) =- s X  

U-length(M/L)R = length sX .  

Moreover, 

and 

s L* = sHom(LR, UR) = s ( M * / X )  

U-length LR = length s ( M * / X )  = n - length s X .  

(2) For any S-submodule X o f  M* let us put  L = ann M X.  Then 

sX-~  s (M/L)*  = sHom((M/L)R ,  UR) 

and 

Moreover 

a n d  

length s X =  U-length(M/L)R = n - U-length LR. 

s ( M * / X )  = s L* = sHom(LR, UR) 

length s ( M * / X )  = U-length LR. 

Proof. (1) It is well known that s (M/L)*  = sHom((M/L)R ,  UR) =- s(annM. L) = sX .  
Since M / L  ~ ~ (U)  by Lemma 1.2, we get U-length(M/L) R = length s (M/L)*  = 

length s X  according to Theorem 3.4. Next, the exact sequence 

(O)~ L-~ M-~  M / L  ~(O) 

induces the exact sequence 

because 
1.2, we 

(O)~ s ( M / L ) * - ,  sM*--,  sL  *--}(O), 

U is M-injective. Hence s L * = s ( M * / X ) .  Since L ¢  ~(U) by Lemma 
get U-length LR = length sL* = length s ( M * / X )  = n - length s X by using 

Theorem 3.4 again. 
(2) According to our assumption and Theorem 3.4 we have length s M * = n .  

Hence s X  is finitely generated; so X = a n n M ,  L by Lemma 3.3. Therefore 
s X = s ( M / L ) *  and s L * - - s ( M * / X )  by (1) of this corollary. Hence by Theorem 3.4 
and Theorem 2.12 we have length s X = U - l e n g t h ( M / L ) R = n - U - l e n g t h L R  and 
length s ( M * / X )  = length s L* = U-length LR. 

Corollary 3.6. Le t  z be a hereditary torsion theory f o r  mod-R which is cogenerated 
by an injective right R-module  E with S = End(ER). A n d  let us set 
s M * = s H o m ( M R ,  ER) f o r  each M~mod-R.  Then there is a one-to-one cor- 
respondence between z-composition series o f  M R and composition series o f  s M*, 

under which i f  
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(a) 

and 

(b) 

MR = Mo D MI D ... D Mn = T~(M) 

(O)=XoCXIC"'CXr=s M* 

are the corresponding chains, they satisfy the equality n = r and the conditions 
Mi = annM Xi and Xj  = annM. Mj f o r  all i and all j. Therefore we have 

length sM* = z-length M R. 

Proof. Any z-compositi0n series of M is nothing but an E-composition series of M 
and z-length MR = E-length M R for each M e  mod-R. Hence this is a direct conse- 
quence of Theorem 3.4. 

Corollary 3.7. Let  U be a quasi-injective, M-injective cogenerator in mod-R with 

S = End(UR). A n d  let us set sM*= sHorn(MR, UR). Then we have 

length sM* = length MR. 

Proof. Since U is a cogenerator in mod-R, every U-composition series is nothing but 
a composition series. Hence by Theorem 3.4 we have 

length s M* = U-length MR = length M R. 

An (a quasi-) injective right R-module U is said to be A (resp. 27) -(quasi-) injec- 
tive if R satisfies the d.c.c. (resp. a.c.c.) on U-closed right ideals (refer to [3]). 
Miller-Teply proved in [8] that every d-injective module is 27-injective. Moreover, 
it was shown in Faith [3] that every d-quasi-injective module is 27-quasi-injective. 

Corollary 3.8 (Faith [3, Proposition 8.1]). (1) Let U be a quasi-injective right 
R-module with S = End(UR). Then the following statements are equivalent. 

(a) S U is o f  f inite length. 
CO) s U  is noetherian. 
(c) UR is A-quasi-injective, that is, ~v(R) is artinian. 

(2) In particular, i f  U R is an injective module which cogenerates a hereditary 
torsion theory z, the fol lowing statements are equivalent. 

(a) length s U= n < ~ .  
(b) s U  is noetherian. 
(c) U R is A-injective, that is, ~v(R)  is artinian. 

(d) z-length RR = n < ~ .  

Proof. (1) Since each I e  ~v(R)  satisfies I=annR annul  by Lemma 1.1, Co) implies 
(c). Next, assume (c). Since every finitely generated S-submodule W of U satisfies 
W=annuann R W by Jolmson-Wong's theorem (a special case of Lemma 3.3 for 
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M=R) and since UR is also 27-quasi-injective by Miller-Teply-Faith's theorem, (c) 
implies (a). (a)= (b) is trivial. 

(2) This follows directly from (1) of this corollary and a special case of Corollary 
3.6 for M = R .  

A ring R is said to be right upper (resp. lower) Levitzki if R satisfies the a.c.c. 
(resp. d.c.c.) on right annulets. Similarly, a left upper (resp. lower) Levitzki ring is 
defined. A lower and upper Levitzki ring is called Levitzki for short. 

Corollary 3.9. I f  there exists a faithful, A-quasi-injective module in mod-R, then R 
is a subring o f  a semi-primary Levitzki ring. If, furthermore, it is balanced, R itself 
is a semi-primary Levitzki ring. 

Proof. This follows from Corollary 3.8 and [3, Theorem 6.2]. 

In what follows, we will study endomorphism rings of U-torsionless modules 
of finite U-length under some additional conditions. 

Lemma 3.10. Let U, M e  mod-R with M U-torsionless and let S= End(UR). Then 
there is a ring monomorphism: 

Hom(MR, MR) ~ Hom(s Horn(MR, UR), s Hom(MR, UR)). 

Proof. Define a map ¢/: Horn(MR, MR)-~Hom(sHom(MR, UR), sHorn(MR, UR)) 
by setting (f)[~(a)] =fa  for all a e Hom(MR, MR) and all f e  Hom(MR, UR). Then 
we can easily verify that ~u is a ring homomorphism. Next, suppose ~(a)= 0. Then 
f a  = 0 for all f e  Hom(M R, UR). Since U cogenerates M, this implies a = 0. Hence 
~/is a ring monomorphism. 

Theorem 3.11. Let U, M e  ~(U) with M U-torsionless. Then we have the following 
assertions. 

(1) I f  M is U-cocritical, then the endomorphism ring o f  M R is embeddable in a 
division ring. 

(2) I f  U-length MR < oo, then the endomorphism ring o f  M R is embeddable in a 
semi-primary Levitzki ring. 

Proof. Let S=End(UR).  
(1) Since M is U-cocritical, sHorn(MR, UR) is simple by Lemma 3.2. Hence 

Hom(sHom(MR, UR), sHom(MR, UR)) is a division ring. Therefore this result is 
due to Lemma 3.10. 

(2) Since U-length MR< co, sHorn(MR, UR) is of finite length by Theorem 3.4. 
Hence Hom(sHom(MR, UR), sHorn(MR, UR)) is a semiprimary Levitzki ring by [3, 
Theorem 6.2]. Thus, this follows from Lemma 3.10. 
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Corollary 3.12. Let z be a hereditary torsion theory for  mod-R and let M be a 
z-torsion free right R-module. Then we have the following assertions. 

(1) I f  M is z-cocritical, then End(MR) is embeddable in a division ring (see [4, 
Proposition 18.2]). 

(2) I f  z-length MR < 00, then End(MR) is embeddable in a semi-primary Levitzki 
ring. 

4. Modules over the endomorphism ring of a quasi-injective module 

Throughout this section let U be a quasi-injective right R-module with 
S = End(UR). For each M •  mod-R let us set sM*= sHorn(MR, UR). In this section 
we will show some necessary and sufficient conditions for s M* to be coperfect, 
noetherian, and of finite length, respectively. Consequently, we will give some 
necessary and sufficient conditions for S to be right perfect, left noetherian, and left 
artinian, respectively. A module M R is said to be coperfect if M satisfies the d.c.c. 
on finitely generated R-submodules. It is well known that MR is coperfect if and 
only if MR satisfies the d.c.c, on cyclic submodules (Bj6rk [2]). 

Theorem 4.1. sM* is coperfect i f  and only i f  the a.c.c, holds on 

{LRc_MRIL=Ker Ot for  some Ot eM*} = {LRc_MRIM/Lc.U}. 

Proof.  Sufficiency. Let 

Sot  ~ S(s1  t~ ) _~ S(S2Slot ) D_ ... 

be any descending chain of cyclic S-submodules of M*, where a • M* and si • S for 
each i. Then we have an ascending chain of R-submodules of M as follows: 

Ker a _c Ker(sl a) _c Ker(s2sla ) c_ .... 

By the assumption there exists an integer n such that 

Ker(sn sn- 1 " "  Sl of) --  Ker(s n +jS n +j_ I "'" Sl Ot) 

for all j_> 1. On the other hand, it holds that 

S(s i s i -  1 "'" S l a )  = a n n M *  annM(sisi- l " ' "  S l0 t )  

= annM* Ker(sisi- 1"'" Sl a) 

for all integer i_> 1 by Lemma 3.3. Hence we have 

S(sns,(_ 1 "'" Slot)=annM * Ker(snsn_ 1 "'" slot) 

= annM. Ker(sn +jSn +j_ 1"" sl Ot) 

= S(s. +js~ +j_ 1"'" sl a) 
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for all j >_ 1. Hence s M* satisfies the d.c.c, on cyclic S-submodules. Therefore sM* 
is coperfect by Bj6rk's theorem. 

Necessity. Consider any ascending chain of kernels of elements a i of M* as 

follows: 

K e r  a 1 c_ K e r  a 2 c_ K e r  a 3 c_ . . . .  

Since UR is quasi-injective, we have the commutative diagram with exact row as 

follows: 
t~ i 

(0) , M / K e r  a i ' U 

U 

w h e r e  t~ i and ~i+ 1 are the R-maps canonically induced by a i and ai+ 1, respectively. 
Hence we have that 

ai+ l(m) = t2i+ l(m + Ker ai) = s i t2 i (m  + Ker ai) = s i a i ( m )  

for all m ~M.  Hence ai+l=$iffi E S a  i for all integer i >  1. Thus, we get a descend- 
ing chain of cyclic S-submodules of M* as follows: 

S a  I :) S a  2_~ S a  3 ~ . . . .  

Since sM* is coperfect, there exists an integer n such that San = San +j for all j_> 1. 
Then we can easily verify that 

Ker an = a n n m ( S a n )  = a n n ~ ( S a n  +j) = Ker an +j 

for all j_> 1. This completes the proof of Theorem 4.1. 

Corollary 4.2. S is right perfect i f  and only i f  U R satisfies the a.c.c, on 

{LR c_ UR [ L = Ker s for  some element s ~ S } = {L R ~ UR I U/Lc., U}. 

The next theorem is an improvement upon a result of Gupta-Varadara jan  [6, 
Proposition 5.3}. 

Theorem 4.3. sM* is noetherian if  and only i f  ~v(M) is artinian, that is, MR 
satisfies the d.c.c on U-closed submodules. 

P r o o f .  First, assume that s M* is noetherian. Since each L ~ ~v(M)  satisfies L = 
annMannM, L by Lemma 1.1, any strictly descending chain of  fgv(M) induces a 
strictly ascending chain o f  S-submodules of M*. Hence fCu(M) has to be artinian. 

Next, assume that ~¢v(M) is artinian. Let X I C X 2 C X 3 C . . .  be any strictly 
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ascending chain of finitely generated S-submodules of M*. According to Lemma 3.3 
we have Xi = annM. annM Xi for each i. Hence we get a strictly descending chain of 
~u(M) as follows: 

ann  M X 1 D a n n  M X 2 D a n n  M X 3 D-- - .  

Hence sM* satisfies the a.c.c, on finitely generated submodules. Therefore sM* is 
noetherian. 

Corol lary  4.4 (Harada-Ishii [7]). S is left noetherian if  and only i f  ~u(U) is 
artinian, that is, UR satisfies the d.c.c, on U-closed submodules, i.e., {LRc_ 
UR [ L = annu X for some subset X o f  S }. 

T h e o r e m  4.5. s M* is o f  finite length i f  and only i f  ~u(M) is noetherian and 
artinian, that is, MR satisfies the a.c.c, and d.c.c, on U-closed submodules. 

P r o o f .  First, assume that sM* is of finite length. Then by Theorem 4.3 ~u(M) is 
artinian. Next, according to Lemma 1.1 any strictly ascending chain of  ~v(M) in- 
duces a strictly descending chain of S-submodules of M*. Since s M* is artinian, 
~u(M) has to be noetherian. Conversely, assume that ~u(M) is noetherian and 

artinian. Then sM* is noetherian and coperfect by Theorem 4.3 and 4.1, respec- 
tively. So s M* is of finite length. 

R e m a r k .  For M, Ue modoR we put S = End(UR) and sM*= sHom(MR, UR). Let us 
consider the following conditions. 

(a) length sM*< oo.  

Co) gu(M) is noetherian and artinian. 
(c) M R has a U-composition series. 

If Ue ~P(U), (a) and (b) are equivalent (Theorem 4.5). If ME ~(U), (b) and (c) are 
equivalent (Theorem 2.6). And, if U, M e  ~v(U), all three conditions are equivalent, 
and in addition we have length sM*= U-length MR (Theorem 2.6, 4.5 and 3.4). 

Corol lary  4.6. S is left artinian i f  and only i f  ~u(U) is noetherian and artinian, that 
is, U R satisfies the a.c. c and d.c.c, on U-closed submodules. In fact, we have 

length sS= U-length UR. 

Corol lary  4.7. Let U be a quasi-injective cogenerator in mod-R with S = End(UR). 
And let us set sM*= sHorn(MR, UR) for  each M~mod-R. Then we have the 
following assertions. 

(1) s M* is noetherian i f  and only i f  MR is artinian. 
(2) s M* is o f finite length i f  and only i f  so is also MR. 
(3) S is left noetherian i f  and only. i f  UR is artinian. 
(4) S is left artinian i f  and only i f  UR is o f  finite length. Moreover, we have 

length sS = length UR. 
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