COMPOSITION SERIES RELATIVE TO A MODULE

Tatsuo IZAWA

Department of Mathematics, Shizuoka University, Shizuoka, Japan

Communicated by H. Bass Received 18 July 1983

Introduction

Let R be an associative ring with identity and let us denote by mod-R the category of all unital right R-modules. For each hereditary torsion theory τ for mod-R and each $M \in \text{mod-}R$ Goldman introduced in [5] the concept of a τ -composition series of M as a generalization of composition series. And it was shown in [5] that M has a τ -composition series if and only if M satisfies the a.c.c. and d.c.c. on τ -closed submodules, and all τ -composition series of M, if there exist, have the same length. Any hereditary torsion theory for mod-R is defined (i.e., cogenerated) by some injective right R-module; so if τ is cogenerated by an injective right R-module E, then any τ -composition series of M can be regarded as a composition series relative to a module E.

In this paper for each (not necessarily injective) right R-module U we will introduce the concept of a U-composition series of any right R-module M. And we will generalize those results which have been obtained in [5]. In Section 2 we will show that when U is M-injective, M has a U-composition series if and only if M satisfies the a.c.c. and d.c.c. on U-closed submodules, i.e., $\{L_R \subseteq M_R | M/L \text{ is } U$ torsionless}, and all U-comosition series of M have the same length (Theorem 2.6 and 2.8, respectively). Moreover, if U is a quasi-injective, M-injective right Rmodule with endomorphism ring $S = \text{End}(U_R)$, we will show in Section 3 that there exists a kind of mutual relation between U-composition series of M and composition series of $_S\text{Hom}(M_R, U_R)$. In particular, it will be proved that M_R has a U-composition series of length n if and only if $_S\text{Hom}(M_R, U_R)$ has a composition series of length n (Theorem 3.4). And in Section 4 we will show some necessary and sufficient conditions for $_S\text{Hom}(M_R, U_R)$ to be coperfect, noetherian, and of finite length, respectively, in case U is a quasi-injective right R-module with $S = \text{End}(U_R)$ (Theorem 4.1, 4.3 and 4.5, respectively).

1. Preliminaries

For any hereditary torsion theory τ for mod-R and any $M \in \text{mod-}R$ a chain of R-submodules

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = T_\tau(M)$$

where $T_{\tau}(M)$ denotes the τ -torsion submodule of M, is called a τ -composition series of M if M_{i-1}/M_i is τ -cocritical, i.e., M_{i-1}/M_i is τ -torsionfree and any proper homomorphic image of M_{i-1}/M_i is τ -torsion for i = 1, ..., n.

For $M, U \in \text{mod-}R$, M is said to be U-torsion if $\text{Hom}(M_R, U_R) = (0)$, and M is said to be U-torsionless if $M_R \hookrightarrow \prod U_R$ (a direct product of copies of U). Clearly if M is U-torsion and N is U-torsionless, then $\text{Hom}(M_R, N_R) = (0)$. An R-submodule L of M is said to be a U-closed submodule of M if M/L is U-torsionless. The next lemma can be proved without much difficulty.

Lemma 1.1. For $L, M, U \in \text{mod-}R$ with $L \subseteq M$ let us set $M^* = \text{Hom}(M_R, U_R)$. Then, L is a U-closed submodule of M if and only if

$$L = \operatorname{ann}_M X = \{m \in M \mid f(m) = 0 \text{ for all } f \in X\}$$

for some subset X of M*, in fact,

 $L = \operatorname{ann}_M \operatorname{ann}_M L$

$$= \{m \in M \mid f(m) = 0 \text{ for all } f \in M^* \text{ such that } f(m') = 0 \text{ for all } m' \in L \}.$$

Hence $\bar{L} = \operatorname{ann}_{M} \operatorname{ann}_{M^*} L$ is smallest among all U-closed submodules of M which contain L.

Throughout this paper $\tau_U(M)$ always denotes $\operatorname{ann}_M M^* = \{m \in M \mid f(m) = 0 \text{ for all } f \in M^*\}$, where $M^* = \operatorname{Hom}(M_R, U_R)$. According to Lemma 1.1, $\tau_U(M)$ is the smallest U-closed submodule of M. A chain of R-submodules of $M, M_0 \supset M_1 \supset \cdots \supset M_n$ is said to be a U-chain of length n if M_{i-1}/M_i is not U-torsion for i = 1, ..., n. If M has a U-chain of length n, then we denote it by U-dim $M_R \ge n$. If there is not any U-chain of length n in M, we denote it by U-dim $M_R \ge n$. If U-dim $M_R \ge n$ and U-dim $M_R \ge n + 1$, then we denote it by U-dim $M_R \ge n$.

Definition. A non-zero right *R*-module V is said to be *U*-cocritical if V is *U*-torsionless and any proper homomorphic image of V is *U*-torsion. A chain of *R*-submodules of M

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = \tau_U(M)$$

is called a U-composition series of M if M_{i-1}/M_i is U-cocritical for i = 1, ..., n.

In case U is a cogenerator in mod-R, V is U-cocritical if and only if V is simple.

Hence in such case a U-composition series of M is nothing but a composition series of M.

As usual, M is said to be N-injective if any R-homomorphism of any R-submodule of N into M can be extended to an R-homomorphism of N into M.

Notation. $\Psi(M) = \{N \in \text{mod-}R \mid M \text{ is } N \text{-injective}\}.$

M is said to be quasi-injective if and only if $M \in \Psi(M)$, and *M* is injective if and only if $\Psi(M) = \text{mod}-R$. The next lemma is very useful.

Lemma 1.2 (Azumaya [1]). $\Psi(M)$ is closed under taking submodules, homomorphic images and direct sums.

Throughout this paper any homomorphism will be written on the side opposite the scalars and $\operatorname{End}(M_R)$ denotes the endomorphism ring of M for each $M \in \operatorname{mod}$ -R. Thus, if $S = \operatorname{End}(M_R)$, we can regard M as a left S-module for each $M \in \operatorname{mod}$ -R. And $X \subset Y$ ($Y \supset X$) always implies $X \subseteq Y$ and $X \neq Y$ for any two sets X and Y.

2. U-composition series

Throughout this section we assume that every module is a right *R*-module.

Lemma 2.1. We have the following assertions.

(1) Let $(0) \rightarrow X \rightarrow Y$ be any exact sequence with $Y \in \Psi(U)$. If Y is U-torsion, then so is X.

(2) If $X \in \Psi(U)$, then $\tau_U(X)$ is U-torsion.

(3) Let $(0) \rightarrow X \xrightarrow{\Psi} Y \xrightarrow{\phi} Z \rightarrow (0)$ be any exact sequence with $Y \in \Psi(U)$. If X and Z both are U-torsionless, then so is Y.

Proof. (1) Since U is Y-injective, we get the exact sequence $\text{Hom}(Y_R, U_R) \rightarrow \text{Hom}(X_R, U_R) \rightarrow (0)$. Since $\text{Hom}(Y_R, U_R) = (0)$ by the assumption, we have $\text{Hom}(X_R, U_R) = (0)$, as desired.

(2) If $\tau_U(X)$ is not U-torsion, there is a non-zero R-homomorphism $f: \tau_U(X) \to U$. Since U is X-injective, f can be extended to $h: X \to U$. Then there is an element x in $\tau_U(X)$ such that $h(x) \neq 0$. This contradicts $\tau_U(X) = \operatorname{ann}_X X^*$, where $X^* = \operatorname{Hom}(X_R, U_R)$.

(3) Let y be any non-zero element of Y. If $\phi(y) \neq 0$, there is an R-homomorphism $h: Z \to U$ such that $h\phi(y) \neq 0$. Hence $f = h\phi: Y \to U$ carries y onto a non-zero element of U. Next, assume $\phi(y) = 0$. Then $y \in \text{Ker } \phi = \text{Im } \psi$. Hence there is an element x in X such that $\psi(x) = y$. Since X is U-torsionless, there is an R-homomorphism $g: X \to U$ such that $g(x) \neq 0$. Then, since U is Y-injective, there is an R-homomorphism $f: Y \to U$ such that $g = f\psi$. Therefore $f(y) = f\psi(x) = g(x) \neq 0$. Thus, we conclude that Y is U-torsionless.

Lemma 2.2. Let $M \in \Psi(U)$. If

(a) $M_0 \supset M_1 \supset \cdots \supset M_n$

is any U-chain of length n in M, then there is a chain of U-closed submodules M'_i of M with length n as follows:

(b) $M'_0 \supset M'_1 \supset \cdots \supset M'_n$.

Proof. Let us put $M'_0/M_0 = \tau_U(M/M_0)$. Then M/M'_0 is U-torsionless. Since M_0/M_1 is not U-torsion, so isn't M'_0/M_1 by Lemma 1.2 and (1) of Lemma 2.1. Next, let us put $M'_1/M_1 = \tau_U(M'_0/M_1)$. Then $M'_1/M_1 \subset M'_0/M_1$ since $\operatorname{Hom}((M'_0/M_1)_R, U_R) \neq$ (0), and M'_0/M'_1 is U-torsionless. Since $M/M'_1 \in \Psi(U)$ by Lemma 1.2, we can easily verify that M'_1 is U-closed in M by using (3) of Lemma 2.1. And, since M_1/M_2 is not U-torsion, so isn't M'_1/M_2 by the same reason as above. let us put $M'_2/M_2 = \tau_U(M'_1/M_2)$. Then $M'_2/M_2 \subset M'_1/M_2$ since $\operatorname{Hom}((M'_1/M_2)_R, U_R) \neq$ (0), and M'_1/M'_2 is U-torsionless. Therefore, since $M/M'_2 \in \Psi(U)$ by Lemma 1.2, and since M'_1/M'_2 and M/M'_1 each are U-torsionless, M'_2 is U-closed in M by (3) of Lemma 2.1. By repeating this argument, if we put $M'_i/M_i = \tau_U(M'_{i-1}/M_i)$ for i = 1, ..., n, at last we have a chain $M'_0 \supset M'_1 \supset \cdots \supset M'_n$ such that M'_i is a U-closed submodule of M for each *i*.

Making use of Lemma 2.2, we can easily verify that when V is U-torsionless and $V \in \Psi(U)$, V is U-cocritical if and only if U-dim $V_R = 1$.

Lemma 2.3. Let M be a U-torsionless right R-module which belongs to $\Psi(U)$ and let N be a non-zero R-submodule of M. Then we have the following assertions.

- (1) If M is U-cocritical, so is N.
- (2) If M/N is U-torsion and N is U-cocritical, then M is U-cocritical, too.

Proof. (1) In this case U-dim M = 1. Since N is U-torsionless, clearly U-dim N = 1. On the other hand, since $N \in \Psi(U)$, N is U-cocritical.

(2) We want to show U-dim $M_R = 1$. Suppose U-dim $M_R \ge 2$. Then there is a chain of length 2, $M_0 \supset M_1 \supset M_2$ such that each M_i is U-closed in M by Lemma 2.2. Let us put $N_i = N \cap M_i$ for i = 0, 1, 2. Since $N/N_i = N/(N \cap M_i) \cong (N+M_i)/M_i$ and M/M_i is U-torsionless, N/N_i is also U-torsionless. Since U-dim $N_R = 1$ by the assumption, either $N_0 = N_1$ or $N_1 = N_2$ holds. Now, assume $N_0 = N_1$. Then

$$M_0/M_1 \cong (M_0/N_0)/(M_1/N_1) \cong (M_0/(N \cap M_0))/(M_1/(N \cap M_1))$$
$$\cong ((N+M_0)/N)/((N+M_1)/N) \cong (N+M_0)/(N+M_1).$$

And, since $M/(N+M_1) \in \Psi(U)$ by Lemma 1.2 and $M/(N+M_1)$ is U-torsion by the assumption, M_0/M_1 ($\cong (N+M_0)/(N+M_1)$) is also U-torsion by (1) of Lemma 2.1. But, since M_0/M_1 is U-torsionless, we get $M_0 = M_1$, which is a contradiction. Similarly, $N_1 = N_2$ also induces a contradiction. Hence we have U-dim $M_R = 1$, and so M is U-cocritical. For $M \in \text{mod-}R$ let us denote by $\mathscr{L}(M)$ the modular lattice consisting of all *R*submodules of *M*. For each $L \in \mathscr{L}(M)$ let us put $L^c/L = \tau_U(M/L)$. Then L^c is smallest among all *U*-closed submodules of *M* which contain *L*, that is, $L^c =$ ann_M ann_{M*}*L*, where $M^* = \text{Hom}(M_R, U_R)$, according to Lemma 1.1. Hence $L^c = L$ if and only if *L* is a *U*-closed submodule of *M*. And the intersection of an arbitrary family of *U*-closed submodules of *M* is again *U*-closed in *M*. Indeed, if $\{L_\lambda\}_{\lambda \in \Lambda}$ is a family of *U*-closed submodules of *M*, there is an *R*-monomorphism: $M/\bigcap_{\lambda \in \Lambda} L_\lambda \to$ $\prod_{\lambda \in \Lambda} M/L_\lambda$. But, since $\prod_{\lambda \in \Lambda} M/L_\lambda$ is *U*-torsionless, so is also $M/\bigcap_{\lambda \in \Lambda} L_\lambda$. That is, $\bigcap_{\lambda \in \Lambda} L_\lambda$ is *U*-closed in *M*.

Lemma 2.4. Let $M \in \Psi(U)$. If L and N are R-submodules of M, then we have $L^{c} \cap N^{c} = (L \cap N)^{c}$.

Proof. Since $L \cap N \subseteq L$, $(L \cap N)^c \subseteq L^c$. Similarly, $(L \cap N)^c \subseteq N^c$. Hence $(L \cap N)^c \subseteq L^c \cap N^c$.

Next, we want to show first $L_1 \cap L_2^c \subseteq (L_1 \cap L_2)^c$ for any two *R*-submodules L_1 and L_2 of *M*. Let $x \in L_1 \cap L_2^c$. Define a map $\psi: (L_1 + L_2)/L_2 \rightarrow M/(L_1 \cap L_2)$ by setting $\psi(x_1 + L_2) = x_1 + L_1 \cap L_2$ for all $x_1 \in L_1$. And let $\alpha \in (M/(L_1 \cap L_2))^* = Hom((M/L_1 \cap L_2))_R, U_R)$. Since $x \in L_1 \cap L_2^c \subseteq L_1$, $x + L_1 \cap L_2 = \psi(x + L_2)$. Then we have

$$\alpha(x+L_1\cap L_2)=\alpha\psi(x+L_2)=0.$$

For, suppose $\alpha \psi(x+L_2) \neq 0$. Since U is M/L_2 -injective by the assumption and Lemma 1.2, $\alpha \psi$ can be extended to $\beta : M/L_2 \rightarrow U$. Hence $\beta(x+L_2) = \alpha \psi(x+L_2) \neq 0$. That is, $x+L_2 \notin \operatorname{ann}_{M/L_2}(M/L_2)^* = L_2^c/L_2$, where $(M/L_2)^* = \operatorname{Hom}((M/L_2)_R, U_R)$, and so $x \notin L_2^c$, which contradicts the choice of x. Therefore $\alpha(x+L_1 \cap L_2) = 0$ for all $\alpha \in (M/(L_1 \cap L_2))^*$. That is to say,

$$x+L_1\cap L_2 \in \operatorname{ann}_{M/(L_1\cap L_2)}(M/(L_1\cap L_2))^* = (L_1\cap L_2)^c/(L_1\cap L_2).$$

Thus, we conclude $x \in (L_1 \cap L_2)^c$. Hence we have $L_1 \cap L_2^c \subseteq (L_1 \cap L_2)^c$, as desired.

Now, putting $L_1 = N$ and $L_2 = L$, we get $L^c \cap N \subseteq (L \cap N)^c$ and so $(L^c \cap N)^c \subseteq (L \cap N)^c$. Next, putting $L_1 = L^c$ and $L_2 = N$, we get $L^c \cap N^c \subseteq (L^c \cap N)^c$. Therefore we have that $L^c \cap N^c \subseteq (L \cap N)^c$ and so $L^c \cap N^c = (L \cap N)^c$. Thus, the proof of Lemma 2.4 is completed.

Let us denote by $\mathscr{C}_U(M)$ the set of all U-closed submodules of M, that is, let us set $\mathscr{C}_U(M) = \{L_R \subseteq M_R \mid L^c = L\}$. Since $\mathscr{C}_U(M)$ is closed under taking intersections, we can give a complete lattice structure to $\mathscr{C}_U(M)$ by setting

$$\bigwedge_{\lambda \in \Lambda} \{L_{\lambda}\} = \bigcap_{\lambda \in \Lambda} L_{\lambda} \quad \text{and} \quad \bigvee_{\lambda \in \Lambda} \{L_{\lambda}\} = \left(\sum_{\lambda \in \Lambda} L_{\lambda}\right)^{c}$$

for every subset $\{L_{\lambda}\}_{\lambda \in \Lambda}$ of $\mathscr{C}_{U}(M)$. Moreover, we have the next proposition.

Proposition 2.5. Let $M \in \Psi(U)$, that is, let U be M-injective. Then $\mathscr{C}_U(M)$ is a complete modular lattice.

Proof. First, notice that $\mathscr{L}(M)$ is a modular lattice. Let $K, L, N \in \mathscr{C}_U(M)$ with $K \subseteq L$. Then we have that

$$L \wedge (K \vee N) = L^{c} \cap (K+N)^{c}$$

= $(L \cap (K+N))^{c}$ by Lemma 2.4
= $(K + (L \cap N))^{c} = K \vee (L \wedge N).$

Hence $\mathscr{C}_U(M)$ is modular, as desired.

Thus, we have seen that $\mathscr{C}_U(M)$ is a complete modular lattice which contains the greatest element M and the smallest element $\tau_U(M)$ in case U is M-injective. In general, if \mathscr{L} is a modular lattice with greatest element 1 and smallest element 0, any maximal chain linking 1 to 0 in \mathscr{L} is called a composition chain of \mathscr{L} . Next, let $M \in \Psi(U)$. Then any U-composition series of $M, M = M_0 \supset M_1 \supset \cdots \supset M_n = \tau_U(M)$ is a composition chain of $\mathscr{C}_U(M)$. Indeed, since $M/M_i, M_{i-1}/M_i \in \Psi(U)$ by Lemma 1.2, we can easily show that $M_i \in \mathscr{C}_U(M)$ for each *i* by using (3) of Lemma 2.1 repeatedly and that this chain is maximal in $\mathscr{C}_U(M)$ by using U-dim $M_{i-1}/M_i = 1$ for each *i*. Conversely, we can also show that any composition chain of $\mathscr{C}_U(M)$ is a U-composition series of M by using Lemma 2.2 and (3) of Lemma 2.1.

Theorem 2.6. Let $M \in \Psi(U)$. Then M has a U-composition series if and only if $\mathscr{C}_U(M)$ is noetherian and artinian, that is, M satisfies the a.c.c. and d.c.c. on U-closed submodules.

Proof. This follows from Proposition 2.5 and [9, Chap. III Proposition 3.5].

Corollary 2.7 (Goldman [5]). Let τ be any hereditary torsion theory for mod-R and let $M \in \text{mod-R}$. Then M has a τ -composition series if and only if M satisfies the a.c.c. and d.c.c. on τ -closed submodules.

Theorem 2.8 (A generalization of the Jordan-Hölder Theorem). Let $M \in \Psi(U)$. Then any two U-composition series of M, if there exist, are equivalent in $\mathscr{C}_U(M)$. That is to say, if

and

$$M_R = N_0 \supset N_1 \supset \cdots \supset N_r = \tau_U(M)$$

 $M_{R} = M_{0} \supset M_{1} \supset \cdots \supset M_{n} = \tau_{U}(M)$

each are U-composition series of M, then we have that n = r and there is a permutation ρ of $\{1, ..., n\}$ such that the intervals $[M_i, M_{i-1}]$ and $[N_{\rho(i)}, N_{\rho(i)-1}]$ are projective in $\mathscr{C}_U(M)$ in the sense of [9, Chap. III] for i = 1, ..., n. **Proof.** This follows from Proposition 2.5 and [9, Chap. III Corollary 3.2].

Remark. If we consider the case where U is an injective cogenerator in mod-R in Theorem 2.8, we get the classical Jordan-Hölder Theorem.

Corollary 2.9 ([5]). Let τ be any hereditary torsion theory for mod-R and let $M \in \text{mod-R}$. Then any two τ -composition series of M, if there exist, are equivalent. In particular, all τ -composition series of M have the same length.

Proof. If τ is cogenerated by an injective right *R*-module *E*, any τ -composition series is nothing but an *E*-composition series.

Let $M \in \Psi(U)$. Then, if M has a U-composition series of length n, we will denote it by U-length $M_R = n$. If M has no U-composition series, we will denote it by Ulength $M_R = \infty$. If U-length $M_R = n < \infty$, we will call M a module of finite U-length. Next, let τ be a hereditary torsion theory for mod-R and let $M \in \text{mod-}R$. Then, if M has a τ -composition series of length n, we will denote it by τ -length $M_R = n$ and call M of finite τ -length. Otherwise, it will be denoted by τ -length $M_R = \infty$.

Theorem 2.10. Let $M \in \Psi(U)$. If M has a U-composition series of length n, then any U-chain of M has finite length t and $t \le n$. In particular, any chain of U-closed sub-modules of M can be refined to a U-composition series of M.

Proof. Since U-length $M_R = n$, the length of any composition chain of $\mathscr{C}_U(M)$ is equal to n by Theorem 2.8. Let $L_0 \supset L_1 \supset \cdots \supset L_t$ be any U-chain of M. Then there exists a chain of length t, $L'_0 \supset L'_1 \supset \cdots \supset L'_t$ in $\mathscr{C}_U(M)$ by Lemma 2.2. According to [9, Chap. III Proposition 3.3], this chain can be refined to a composition chain of $\mathscr{C}_U(M)$. Therefore we get $t \le n$.

Theorem 2.11. Let $M \in \Psi(U)$. M has a U-composition series of length n if and only if there is a maximal U-chain of length n in M. That is to say, U-length $M_R = U$ -dim M_R .

Proof. Necessity. If $M = M_0 \supset M_1 \supset \cdots \supset M_n = \tau_U(M)$ is a U-composition series of length n, this is a U-chain of length n. On the other hand, according to Theorem 2.10 this is a maximal U-chain of M.

Sufficiency. Assume that there is a maximal U-chain of length n in M; say

(a) $M_0 \supset M_1 \supset \cdots \supset M_n$.

Then by Lemma 2.2 we get a chain of U-closed submodules M'_i of M as follows:

(b) $M'_0 \supset M'_1 \supset \cdots \supset M'_n$.

Since (a) is maximal, M/M_0 is U-torsion; so M/M'_0 is U-torsion, too. This as well as the fact that M'_0 is U-closed in M, implies $M = M'_0$. Next, let us put $N_0 = M_0 \cap M'_1$.

Then $M_0/N_0 \cong (M_0 + M_1')/M_1'$, which is U-torsionless and not equal to (0). For, if $(M_0 + M_1')/M_1' = (0)$, $M_0 \subseteq M_1'$. And hence M/M_1' is also U-torsion. So we get $M_1' = M$, which is a contradiction. Next, since U-dim $M_0/M_1 = 1$ by the maximality of (a), U-dim $M_0/N_0 = 1$. So U-dim $(M_0 + M_1')/M_1' = 1$. Therefore $(M_0 + M_1')/M_1'$ is U-cocritical. On the other hand, since $M'_0/M_0 = \tau_U(M/M_0)$ is U-torsion by (2) of Lemma 2.1, $M'_0/(M_0 + M'_1)$ is U-torsion, too, as a homomorphic image of M'_0/M_0 . Hence M'_0/M'_1 is U-cocritical by (2) of Lemma 2.3. Similarly, if we put $N_1 = M_1 \cap M_2'$, $(M_1 + M_2')/M_2'$ ($\cong M_1/N_1$) is U-cocritical by the same reason as above. And $M'_1/M_1 = \tau_U(M'_0/M_1)$ is U-torsion by (2) of Lemma 2.1. And, since $M'_1/(M_1 + M'_2)$ is a U-torsion module as a homomorphic image of M'_1/M_1 , M'_1/M'_2 is U-cocritical by (2) of Lemma 2.3. Repeating this argument, we have that M'_{i-1}/M'_i is U-cocritical for $i=1,\ldots,n$. Next, since $M_n/(M_n\cap \tau_U(M))$ $(\cong (M_n+\tau_U(M))/(M_n)$ $\tau_U(M)$) is U-torsionless and (a) is maximal, we have $M_n = M_n \cap \tau_U(M)$; so $M_n \subseteq \tau_U(M)$. Since M'_n is U-closed in M, $\tau_U(M) \subseteq M'_n$. And, since $\tau_U(M'_{n-1}/M_n) =$ M'_n/M_n , M'_n is smallest among all U-closed submodules of M'_{n-1} which contain M_n . Hence we have $\tau_U(M) = M'_n$. Therefore M has a U-composition series of length *n* as follows:

(c)
$$M = M'_0 \supset M'_1 \supset \cdots \supset M'_n = \tau_U(M).$$

This completes the proof of Theorem 2.11.

Theorem 2.12. Let $(0) \rightarrow A \rightarrow B \xrightarrow{\phi} C \rightarrow (0)$ be any exact sequence of right R-modules with $B \in \Psi(U)$. Then we have

U-length
$$B_R = U$$
-length $A_R + U$ -length C_R .

Proof. First, suppose U-length A = r and U-length C = s. Let

(a)
$$\tau_U(A) = A_0 \subset A_1 \subset \cdots \subset A_r = A$$

and

(b)
$$\tau_U(C) = C_0 \subset C_1 \subset \cdots \subset C_s = C$$

be U-composition series of A and C, respectively. Let us put $A_{r+j} = \phi^{-1}(C_j)$ for j = 0, 1, ..., s. Then we get a chain

(c)
$$\tau_U(A) = A_0 \subset A_1 \subset \cdots \subset A_r = A \subseteq A_{r+0} \subset A_{r+1} \subset \cdots \subset A_{r+s} = B.$$

Then A_i/A_{i-1} and A_{r+j}/A_{r+j-1} both are U-cocritical for i=1, ..., r and j=1, ..., s. Since $A_i/A_{i-1}, A_{r+j}/A_{r+j-1} \in \Psi(U)$ by Lemma 1.2, we have U-dim $A_i/A_{i-1} = 1 = U$ -dim A_{r+j}/A_{r+j-1} for all *i* and all *j*. Clearly $\tau_U(C_1) \subseteq \tau_U(C)$. Next, suppose $x \in C_1$ and $x \notin \tau_U(C_1)$. Then there is an R-homomorphism $\alpha: C_1 \to U$ such that $\alpha(x) \neq 0$. Since U is C-injective by Lemma 1.2, α can be extended to $\beta: C_R \to U_R$. Hence $x \notin \operatorname{ann}_C C^* = \tau_U(C)$, and so $\tau_U(C) \subseteq \tau_U(C_1)$. Hence $\tau_U(C_1) = \tau_U(C)$. Now, ϕ induces the R-isomorphism $\overline{\phi}: A_{r+1}/A \to C_1$ with $\overline{\phi}(A_{r+0}/A) = \tau_U(C)$ and $\overline{\phi}(\tau_U(A_{r+1}/A)) = \tau_U(C_1)$ since $A_{r+1}/A \in \Psi(U)$. Thus, we get $\tau_U(A_{r+1}/A) = A_{r+0}/A$. Hence U-dim $A_{r+1}/A = U$ -dim $(A_{r+1}/A)/\tau_U(A_{r+1}/A) = U$ -dim $(A_{r+1}/A)/(A_{r+0}/A) = U$ -dim $C_1/C_0 = 1$. Thus,

(c')
$$\tau_U(A) = A_0 \subset A_1 \subset \cdots \subset A_r \subset A_{r+1} \subset \cdots \subset A_{r+s} = B$$

is a maximal U-chain of length r+s. Therefore U-length B=r+s=U-length A+U-length C by Theorem 2.11.

Conversely, suppose U-length B = n. According to Theorem 2.10 and 2.11, U-length A = r for some integer $r \le n$. Let

(d)
$$\tau_U(A) = A_0 \subset A_1 \subset \cdots \subset A_r = A$$

be a U-composition series of A and let

(e)
$$A_0 \subset A_1 \subset \cdots \subset A_r = A_{r+0} \subset A_{r+1} \subset \cdots \subset A_{r+s}$$

be a refinement of (d) which is a maximal U-chain of B. Then n=r+s by Theorem 2.11. If we put $\overline{A}_{r+j} = A_{r+j}/A$ for j = 0, 1, ..., s, then we have a maximal U-chain of $\overline{B} = B/A$ as follows:

(f)
$$(0) = \overline{A}_{r+0} \subset \overline{A}_{r+1} \subset \cdots \subset \overline{A}_{r+s}.$$

Hence we have U-length C = U-length $\overline{B} = s$ by Theorem 2.11. Therefore U-length B = n = r + s = U-length A + U-length C. Thus, the proof of Theorem 2.12 is completed.

Corollary 2.13. Let $M \in \Psi(U)$ and let M be of finite U-length. Then for any two R-submodules L and N of M we have

U-length(L + N) + U-length $(L \cap N) = U$ -length L + U-length N.

Proof. Applying Theorem 2.12 to the following two exact sequences

$$(0) \rightarrow L \rightarrow (L+N) \rightarrow (L+N)/L \rightarrow (0)$$

and

$$(0) \rightarrow L \cap N \rightarrow N \rightarrow N/(L \cap N) \rightarrow (0),$$

we can easily get the required equality.

3. A characterization of modules of finite U-length

In this section we will give a new type of characterization of a module M of finite U-length in case U is a quasi-injective, M-injective right R-module. For $M, U \in \text{mod-}R$ with $S = \text{End}(U_R)$ let us set ${}_{S}M^* = {}_{S}\text{Hom}(M_R, U_R)$. As usual, we put

$$\operatorname{ann}_M X = \{m \in M \mid f(m) = 0 \text{ for all } f \in X\}$$

for any subset X of M^* and

$$\operatorname{ann}_{M^*} L = \{ f \in M^* | f(m) = 0 \text{ for all } m \in L \}$$

.

for any subset L of M. Clearly $\operatorname{ann}_M X$ is an R-submodule of M and $\operatorname{ann}_{M^*} L$ is an S-submodule of M^* .

Lemma 3.1. Let $V \in \Psi(U)$. If U-length $V_R = 1$, then $V/\tau_U(V)$ is U-cocritical.

Proof. It is clear by the assumption and the definition of a U-composition series.

Lemma 3.2. Let $U, V \in \Psi(U)$ with $S = \text{End}(U_R)$ and let ${}_{S}V^* = {}_{S}\text{Hom}(V_R, U_R)$. Then, ${}_{S}V^*$ is simple if and only if U-length $V_R = 1$.

Proof. Sufficiency. The exact sequence $(0) \rightarrow \tau_U(V) \rightarrow V \rightarrow V/\tau_U(V) \rightarrow (0)$ induces the exact sequence of left S-modules as follows:

$$(0) \rightarrow \operatorname{Hom}((V/\tau_U(V))_R, U_R) \rightarrow \operatorname{Hom}(V_R, U_R) \rightarrow \operatorname{Hom}(\tau_U(V)_R, U_R) \rightarrow (0),$$

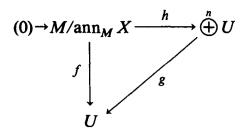
because U is V-injective. By (2) of Lemma 2.1, $\tau_U(V)$ is U-torsion. Hence Hom $(\tau_U(V)_R, U_R) = (0)$. Therefore we have Hom $((V/\tau_U(V))_R, U_R) \cong$ Hom (V_R, U_R) . Now, since $V \in \Psi(U)$ and U-length $V_R = 1$, $V/\tau_U(V)$ is U-cocritical by Lemma 3.1. Hence we may assume that V is U-cocritical without any loss of generality. Let $0 \neq \alpha \in V^*$, and suppose Ker $\alpha \neq (0)$. Then Im $\alpha \cong V/W$ for some non-zero submodule W of V. Since V is U-cocritical, V/W is U-torsion. On the other hand, Im α is U-torsionless as a submodule of U. Hence Im $\alpha = (0)$, which contradicts $\alpha \neq 0$. Hence we have Ker $\alpha = (0)$. That is, every non-zero R-homomorphism of V into U is a monomorphism. Now, let $\alpha, \beta \in V^*$ with $\alpha \neq 0$. Since U_R is quasi-injective, there is an R-homomorphism $s: U \to U$ such that $\beta = s\alpha$. Hence $_S V^* = S\alpha$. That is, $_S V^*$ is simple.

Necessity. Assume that $_{S}V^{*}$ is simple. Then V_{R} has exactly two U-closed submodules $V = \operatorname{ann}_{V}(0)$ and $\tau_{U}(V) = \operatorname{ann}_{V}V^{*}$ by Lemma 1.1. Hence U-length $V_{R} = 1$ by Lemma 2.2. This completes the proof of Lemma 3.2.

Lemma 3.3. Let U be a quasi-injective right R-module with $S = \text{End}(U_R)$ and let us set ${}_SM^* = {}_S\text{Hom}(M_R, U_R)$ for each $M \in \text{mod-}R$. Then for any finitely generated S-submodule X of M^* we have

 $X = \operatorname{ann}_{M^*} \operatorname{ann}_M X.$

Proof. Since ${}_{S}X$ is finitely generated, we can put $X = \sum_{i=1}^{n} S\alpha_i$, where $\alpha_i \in M^*$ for i = 1, ..., n. Define a map $\phi: M_R \to \bigoplus^n U_R$ (the direct sum of *n* copies of U_R) by setting $\phi(m) = (\alpha_1 m, \alpha_2 m, ..., \alpha_n m)$ for all $m \in M$. Then Ker $\phi = \operatorname{ann}_M X$. Hence ϕ induces the *R*-monomorphism $h: M/\operatorname{ann}_M X \to \bigoplus^n U$. Now, clearly $X \subseteq \operatorname{ann}_{M^*} \operatorname{ann}_M X$. Next, we want to show $\operatorname{ann}_{M^*} \operatorname{ann}_M X \subseteq X$. Let β be any element of $\operatorname{ann}_{M^*} \operatorname{ann}_M X$. And, define $f: M/\operatorname{ann}_M X \to U$ by setting $f(m + \operatorname{ann}_M X) = \beta(m)$ for all $m \in M$. Then we have the commutative diagram with exact row as follows:



because $\bigoplus^n U \in \Psi(U)$ by Lemma 1.2. Since we can regard

$$\operatorname{Hom}\left(\stackrel{n}{\oplus} U_{R}, U_{R}\right) = \stackrel{n}{\oplus} \operatorname{Hom}(U_{R}, U_{R}) = \stackrel{n}{\oplus} S,$$

we are able to put $g = (s_1, s_2, ..., s_n)$, where $s_i \in S$ for each *i*. Hence we have that

$$\beta(m) = f(m + \operatorname{ann}_{M} X) = gh(m + \operatorname{ann}_{M} X)$$
$$= g\phi(m) = g(\alpha_{1}m, \alpha_{2}m, \dots, \alpha_{n}m)$$
$$= \sum_{i=1}^{n} s_{i}\alpha_{i}(m) \quad \text{for all } m \in M.$$

Hence

$$\beta = \sum_{i=1}^n s_i \alpha_i \in \sum_{i=1}^n S \alpha_i = X.$$

Thus, we get $\operatorname{ann}_{M^*} \operatorname{ann}_M X \subseteq X$. Therefore we have $X = \operatorname{ann}_{M^*} \operatorname{ann}_M X$.

We are now ready to prove our main result.

Theorem 3.4. Let $U, M \in \Psi(U)$, that is, let U be a quasi-injective, M-injective right R-module with $S = \text{End}(U_R)$. And let us set ${}_{S}M^* = {}_{S}\text{Hom}(M_R, U_R)$. If

(a)
$$M_R = M_0 \supset M_1 \supset \cdots \supset M_n = \tau_U(M)$$

is a U-composition series of length n, then

$$(a^*) \qquad (0) = X_0 \subset X_1 \subset \cdots \subset X_n = {}_S M^*$$

where $X_i = \operatorname{ann}_{M^*} M_i$ for each *i*, is a composition series of length *n*. Then if we put $M'_i = \operatorname{ann}_M X_i$ for each *i*,

$$(a^{**}) \qquad M_R = M'_0 \supset M'_1 \supset \cdots \supset M'_n = \tau_U(M)$$

is equal to (a).

Conversely, if

(b)
$$(0) = X_0 \subset X_1 \subset \cdots \subset X_n = {}_S M^*$$

is a composition series of length n, then

(b*)
$$M_R = M_0 \supset M_1 \supset \cdots \supset M_n = \tau_U(M)$$

where $M_i = \operatorname{ann}_M X_i$ for each *i*, is a U-composition series of length *n*. Then if we

put $X'_i = \operatorname{ann}_{M^*} M_i$ for each i,

(b**) (0) =
$$X'_0 \subset X'_1 \subset \cdots \subset X'_n = {}_S M^*$$

is equal to (b).

In particular, we have

length $_{S}M^{*} = U$ -length M_{R} .

Proof. First, assume that a chain (a) is a U-composition series of length n. Since U is M-injective, we can easily see that every M_i is U-closed in M by using (3) of Lemma 2.1 repeatedly. Hence $M_i = \operatorname{ann}_M \operatorname{ann}_{M^*} M_i$ for i = 0, 1, ..., n according to Lemma 1.1. So, if we put $X_i = \operatorname{ann}_{M^*} M_i$ for each i, we get a chain of S-submodules of M^* with length n as follows:

(a*) (0) = $X_0 \subset X_1 \subset \cdots \subset X_n = {}_S M^*$.

Next, we want to show that (a^*) is a composition series of ${}_{S}M^*$. Let us define a map $\psi: X_i \to \operatorname{Hom}((M_{i-1}/M_i)_R, U_R)$ by setting $[(v)\psi\}(m+M_i) = v(m)$ for all $v \in X_i$ and all $m \in M_{i-1}$. Then clearly ψ is an S-homomorphism and Ker $\psi = X_{i-1}$. Hence ψ induces the S-monomorphism $\overline{\psi}: X_i/X_{i-1} \to \operatorname{Hom}((M_{i-1}/M_i)_R, U_R)$. But, since $M_{i-1}/M_i \in \Psi(U)$ by Lemma 1.2 and M_{i-1}/M_i is U-cocritical, ${}_{S}\operatorname{Hom}((M_{i-1}/M_i)_R, U_R)$ is simple for each *i* by Lemma 3.2. Therefore ${}_{S}(X_i/X_{i-1}) \cong {}_{S}\operatorname{Hom}((M_{i-1}/M_i)_R, U_R)$; so ${}_{S}(X_i/X_{i-1})$ is simple for each *i*. Hence (a^*) is a composition series of ${}_{S}M^*$. And, since $M_i' = \operatorname{ann}_M \operatorname{ann}_{M^*} M_i = M_i$ for each *i*, (a^{**}) is equal to (a).

Conversely, assume that a chain (b) is a composition series of ${}_{S}M^{*}$ with length n. Then, since every X_{i} is a finitely generated S-submodule of M^{*} , we have $X_{i} = \operatorname{ann}_{M^{*}} \operatorname{ann}_{M} X_{i}$ for each i by Lemma 3.3. So, if we put $M_{i} = \operatorname{ann}_{M} X_{i}$ for i = 0, 1, ..., n, we get a chain of length n linking M to $\tau_{U}(M)$ as follows:

(b*)
$$M = M_0 \supset M_1 \supset \cdots \supset M_n = \tau_U(M).$$

Next, we want to show that M_{i-1}/M_i is U-cocritical for each *i*. For this purpose we will first show that $S(\operatorname{ann}_{M_{i-1}^*}M_i) (\cong_S \operatorname{Hom}((M_{i-1}/M_i)_R, U_R))$ is simple, where $M_{i-1}^* = \operatorname{Hom}((M_{i-1})_R, U_R)$. Let $\alpha, \beta \in \operatorname{ann}_{M_{i-1}^*}M_i$ with $\alpha \neq 0$. Since U is M-injective, α (resp. β) can be extended to $\overline{\alpha}$ (resp. $\overline{\beta}$) of M^* . Then, since $\overline{\alpha}, \overline{\beta} \in \operatorname{ann}_{M^*}M_i = X_i$ and $\overline{\alpha} \notin \operatorname{ann}_{M^*}M_{i-1} = X_{i-1}$, and since $S(X_i/X_{i-1})$ is simple, there exists an element s of S such that $\overline{\beta} - s\overline{\alpha} \in X_{i-1} = \operatorname{ann}_{M^*}M_{i-1}$. Hence $(\beta - s\alpha)M_{i-1} = (\overline{\beta} - s\overline{\alpha})M_{i-1} = (0)$. Therefore we have $\beta = s\alpha$; so $S(\operatorname{ann}_{M_{i-1}^*}M_i) = S\alpha$. Thus, $S(\operatorname{ann}_{M_{i-1}^*}M_i)$, and hence $S\operatorname{Hom}((M_{i-1}/M_i)_R, U_R)$ is simple, as desired. Hence U-length $M_{i-1}/M_i = 1$ by Lemma 3.2. On the other hand, since M_i is U-closed in M by Lemma 1.1, M_{i-1}/M_i is U-torsionless. Therefore M_{i-1}/M_i is U-cocritical for each *i*. Thus, (b*) is a U-composition series of M_R . Moreover, since $X_i' = \operatorname{ann}_{M^*} M_i = \operatorname{ann}_M * \operatorname{ann}_M X_i = X_i$ for each *i*, (b**) is equal to (b). This completes the proof of Theorem 3.4.

Corollary 3.5. Let U, S, M and M* be the same as in Theorem 3.4. Suppose

U-length $M_R = n < \infty$. Then we have the following statements.

(1) For any R-submodule L of M let us put $X = \operatorname{ann}_{M^*} L$. Then

$$_{S}(M/L)^{*} = _{S}\operatorname{Hom}((M/L)_{R}, U_{R}) \cong _{S}X$$

and

U-length $(M/L)_R$ = length $_S X$.

Moreover,

$$_{S}L^{*} = {}_{S}\operatorname{Hom}(L_{R}, U_{R}) \cong {}_{S}(M^{*}/X)$$

and

U-length
$$L_R = \text{length}_S(M^*/X) = n - \text{length}_S X$$
.

(2) For any S-submodule X of M^* let us put $L = \operatorname{ann}_M X$. Then

$$_{S}X \cong _{S}(M/L)^{*} = _{S}Hom((M/L)_{R}, U_{R})$$

and

length
$$_{S}X = U$$
-length $(M/L)_{R} = n - U$ -length L_{R}

Moreover

and.

$$_{S}(M^{*}/X) \cong _{S}L^{*} = _{S}\operatorname{Hom}(L_{R}, U_{R})$$

length
$$_{S}(M^{*}/X) = U$$
-length L_{R} .

Proof. (1) It is well known that ${}_{S}(M/L)^{*} = {}_{S}\operatorname{Hom}((M/L)_{R}, U_{R}) \cong {}_{S}(\operatorname{ann}_{M^{*}}L) = {}_{S}X$. Since $M/L \in \Psi(U)$ by Lemma 1.2, we get U-length $(M/L)_{R} = \operatorname{length}_{S}(M/L)^{*} = \operatorname{length}_{S}X$ according to Theorem 3.4. Next, the exact sequence

 $(0) \rightarrow L \rightarrow M \rightarrow M/L \rightarrow (0)$

induces the exact sequence

 $(0) \rightarrow_S (M/L)^* \rightarrow_S M^* \rightarrow_S L^* \rightarrow (0),$

because U is M-injective. Hence ${}_{S}L^* \cong_{S}(M^*/X)$. Since $L \in \Psi(U)$ by Lemma 1.2, we get U-length $L_R = \text{length } {}_{S}L^* = \text{length } {}_{S}(M^*/X) = n - \text{length } {}_{S}X$ by using Theorem 3.4 again.

(2) According to our assumption and Theorem 3.4 we have length ${}_{S}M^{*}=n$. Hence ${}_{S}X$ is finitely generated; so $X = \operatorname{ann}_{M^{*}}L$ by Lemma 3.3. Therefore ${}_{S}X \cong {}_{S}(M/L)^{*}$ and ${}_{S}L^{*} \cong {}_{S}(M^{*}/X)$ by (1) of this corollary. Hence by Theorem 3.4 and Theorem 2.12 we have length ${}_{S}X = U$ -length $(M/L)_{R} = n - U$ -length L_{R} and length ${}_{S}(M^{*}/X) = \operatorname{length}_{S}L^{*} = U$ -length L_{R} .

Corollary 3.6. Let τ be a hereditary torsion theory for mod-R which is cogenerated by an injective right R-module E with $S = \text{End}(E_R)$. And let us set ${}_{S}M^* = {}_{S}\text{Hom}(M_R, E_R)$ for each $M \in \text{mod-}R$. Then there is a one-to-one correspondence between τ -composition series of M_R and composition series of ${}_{S}M^*$, under which if T. Izawa

(a)
$$M_R = M_0 \supset M_1 \supset \cdots \supset M_n = T_\tau(M)$$

and

(b)
$$(0) = X_0 \subset X_1 \subset \cdots \subset X_r = {}_S M^*$$

are the corresponding chains, they satisfy the equality n = r and the conditions $M_i = \operatorname{ann}_M X_i$ and $X_j = \operatorname{ann}_{M^*} M_j$ for all i and all j. Therefore we have

length
$$_{S}M^{*} = \tau$$
-length M_{R} .

Proof. Any τ -composition series of M is nothing but an E-composition series of M and τ -length $M_R = E$ -length M_R for each $M \in \text{mod}-R$. Hence this is a direct consequence of Theorem 3.4.

Corollary 3.7. Let U be a quasi-injective, M-injective cogenerator in mod-R with $S = \text{End}(U_R)$. And let us set ${}_{S}M^* = {}_{S}\text{Hom}(M_R, U_R)$. Then we have

length $_{S}M^{*}$ = length M_{R} .

Proof. Since U is a cogenerator in mod-R, every U-composition series is nothing but a composition series. Hence by Theorem 3.4 we have

length $_{S}M^{*} = U$ -length M_{R} = length M_{R} .

An (a quasi-) injective right R-module U is said to be Δ (resp. Σ) -(quasi-) injective if R satisfies the d.c.c. (resp. a.c.c.) on U-closed right ideals (refer to [3]). Miller-Teply proved in [8] that every Δ -injective module is Σ -injective. Moreover, it was shown in Faith [3] that every Δ -quasi-injective module is Σ -quasi-injective.

Corollary 3.8 (Faith [3, Proposition 8.1]). (1) Let U be a quasi-injective right R-module with $S = \text{End}(U_R)$. Then the following statements are equivalent.

(a) ${}_{S}U$ is of finite length.

- (b) ${}_{S}U$ is noetherian.
- (c) U_R is Δ -quasi-injective, that is, $\mathscr{C}_U(R)$ is artinian.

(2) In particular, if U_R is an injective module which cogenerates a hereditary torsion theory τ , the following statements are equivalent.

- (a) length $_{S}U = n < \infty$.
- (b) $_{S}U$ is noetherian.
- (c) U_R is Δ -injective, that is, $\mathscr{C}_U(R)$ is artinian.
 - (d) τ -length $R_R = n < \infty$.

Proof. (1) Since each $I \in \mathscr{C}_U(R)$ satisfies $I = \operatorname{ann}_R \operatorname{ann}_U I$ by Lemma 1.1, (b) implies (c). Next, assume (c). Since every finitely generated S-submodule W of U satisfies $W = \operatorname{ann}_U \operatorname{ann}_R W$ by Johnson-Wong's theorem (a special case of Lemma 3.3 for M=R) and since U_R is also Σ -quasi-injective by Miller-Teply-Faith's theorem, (c) implies (a). (a) \Rightarrow (b) is trivial.

(2) This follows directly from (1) of this corollary and a special case of Corollary 3.6 for M=R.

A ring R is said to be right upper (resp. lower) Levitzki if R satisfies the a.c.c. (resp. d.c.c.) on right annulets. Similarly, a left upper (resp. lower) Levitzki ring is defined. A lower and upper Levitzki ring is called Levitzki for short.

Corollary 3.9. If there exists a faithful, Δ -quasi-injective module in mod-R, then R is a subring of a semi-primary Levitzki ring. If, furthermore, it is balanced, R itself is a semi-primary Levitzki ring.

Proof. This follows from Corollary 3.8 and [3, Theorem 6.2].

In what follows, we will study endomorphism rings of U-torsionless modules of finite U-length under some additional conditions.

Lemma 3.10. Let $U, M \in \text{mod-}R$ with M U-torsionless and let $S = \text{End}(U_R)$. Then there is a ring monomorphism:

 $\operatorname{Hom}(M_R, M_R) \rightarrow \operatorname{Hom}(_{S}\operatorname{Hom}(M_R, U_R), _{S}\operatorname{Hom}(M_R, U_R)).$

Proof. Define a map ψ : Hom $(M_R, M_R) \rightarrow$ Hom $(_S$ Hom $(M_R, U_R), _S$ Hom $(M_R, U_R))$ by setting $(f)[\psi(\alpha)] = f\alpha$ for all $\alpha \in$ Hom (M_R, M_R) and all $f \in$ Hom (M_R, U_R) . Then we can easily verify that ψ is a ring homomorphism. Next, suppose $\psi(\alpha) = 0$. Then $f\alpha = 0$ for all $f \in$ Hom (M_R, U_R) . Since U cogenerates M, this implies $\alpha = 0$. Hence ψ is a ring monomorphism.

Theorem 3.11. Let $U, M \in \Psi(U)$ with M U-torsionless. Then we have the following assertions.

(1) If M is U-cocritical, then the endomorphism ring of M_R is embeddable in a division ring.

(2) If U-length $M_R < \infty$, then the endomorphism ring of M_R is embeddable in a semi-primary Levitzki ring.

Proof. Let $S = \text{End}(U_R)$.

(1) Since M is U-cocritical, $_{S}Hom(M_{R}, U_{R})$ is simple by Lemma 3.2. Hence $Hom(_{S}Hom(M_{R}, U_{R}), _{S}Hom(M_{R}, U_{R}))$ is a division ring. Therefore this result is due to Lemma 3.10.

(2) Since U-length $M_R < \infty$, _SHom (M_R, U_R) is of finite length by Theorem 3.4. Hence Hom $(_S$ Hom (M_R, U_R) , _SHom (M_R, U_R)) is a semiprimary Levitzki ring by [3, Theorem 6.2]. Thus, this follows from Lemma 3.10. **Corollary 3.12.** Let τ be a hereditary torsion theory for mod-R and let M be a τ -torsionfree right R-module. Then we have the following assertions.

(1) If M is τ -cocritical, then $\text{End}(M_R)$ is embeddable in a division ring (see [4, Proposition 18.2]).

(2) If τ -length $M_R < \infty$, then $\operatorname{End}(M_R)$ is embeddable in a semi-primary Levitzki ring.

4. Modules over the endomorphism ring of a quasi-injective module

Throughout this section let U be a quasi-injective right R-module with $S = \text{End}(U_R)$. For each $M \in \text{mod-}R$ let us set ${}_SM^* = {}_S\text{Hom}(M_R, U_R)$. In this section we will show some necessary and sufficient conditions for ${}_SM^*$ to be coperfect, noetherian, and of finite length, respectively. Consequently, we will give some necessary and sufficient conditions for S to be right perfect, left noetherian, and left artinian, respectively. A module M_R is said to be coperfect if M satisfies the d.c.c. on finitely generated R-submodules. It is well known that M_R is coperfect if and only if M_R satisfies the d.c.c. on cyclic submodules (Björk [2]).

Theorem 4.1. SM^* is coperfect if and only if the a.c.c. holds on

$$\{L_R \subseteq M_R \mid L = \text{Ker } \alpha \text{ for some } \alpha \in M^*\} = \{L_R \subseteq M_R \mid M/L \hookrightarrow U\}.$$

Proof. Sufficiency. Let

 $S\alpha \supseteq S(s_1\alpha) \supseteq S(s_2s_1\alpha) \supseteq \cdots$

be any descending chain of cyclic S-submodules of M^* , where $\alpha \in M^*$ and $s_i \in S$ for each *i*. Then we have an ascending chain of R-submodules of M as follows:

Ker $\alpha \subseteq \operatorname{Ker}(s_1\alpha) \subseteq \operatorname{Ker}(s_2s_1\alpha) \subseteq \cdots$.

By the assumption there exists an integer n such that

$$\operatorname{Ker}(s_n s_{n-1} \cdots s_1 \alpha) = \operatorname{Ker}(s_{n+j} s_{n+j-1} \cdots s_1 \alpha)$$

for all $j \ge 1$. On the other hand, it holds that

$$S(s_i s_{i-1} \cdots s_1 \alpha) = \operatorname{ann}_{M^*} \operatorname{ann}_M(s_i s_{i-1} \cdots s_1 \alpha)$$

$$= \operatorname{ann}_{M^*} \operatorname{Ker}(s_i s_{i-1} \cdots s_1 \alpha)$$

for all integer $i \ge 1$ by Lemma 3.3. Hence we have

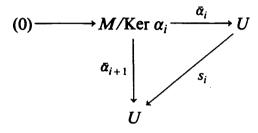
$$S(s_n s_{n-1} \cdots s_1 \alpha) = \operatorname{ann}_{M^*} \operatorname{Ker}(s_n s_{n-1} \cdots s_1 \alpha)$$
$$= \operatorname{ann}_{M^*} \operatorname{Ker}(s_{n+j} s_{n+j-1} \cdots s_1 \alpha)$$
$$= S(s_{n+j} s_{n+j-1} \cdots s_1 \alpha)$$

for all $j \ge 1$. Hence ${}_{S}M^*$ satisfies the d.c.c. on cyclic S-submodules. Therefore ${}_{S}M^*$ is coperfect by Björk's theorem.

Necessity. Consider any ascending chain of kernels of elements α_i of M^* as follows:

Ker $\alpha_1 \subseteq$ Ker $\alpha_2 \subseteq$ Ker $\alpha_3 \subseteq \cdots$.

Since U_R is quasi-injective, we have the commutative diagram with exact row as follows:



where $\bar{\alpha}_i$ and $\bar{\alpha}_{i+1}$ are the *R*-maps canonically induced by α_i and α_{i+1} , respectively. Hence we have that

$$\alpha_{i+1}(m) = \overline{\alpha}_{i+1}(m + \operatorname{Ker} \alpha_i) = s_i \overline{\alpha}_i(m + \operatorname{Ker} \alpha_i) = s_i \alpha_i(m)$$

for all $m \in M$. Hence $\alpha_{i+1} = s_i \alpha_i \in S \alpha_i$ for all integer $i \ge 1$. Thus, we get a descending chain of cyclic S-submodules of M^* as follows:

 $S\alpha_1 \supseteq S\alpha_2 \supseteq S\alpha_3 \supseteq \cdots$.

Since ${}_{S}M^{*}$ is coperfect, there exists an integer *n* such that $S\alpha_{n} = S\alpha_{n+j}$ for all $j \ge 1$. Then we can easily verify that

Ker $\alpha_n = \operatorname{ann}_{\mathcal{M}}(S\alpha_n) = \operatorname{ann}_{\mathcal{M}}(S\alpha_{n+j}) = \operatorname{Ker} \alpha_{n+j}$

for all $j \ge 1$. This completes the proof of Theorem 4.1.

Corollary 4.2. S is right perfect if and only if U_R satisfies the a.c.c. on

 $\{L_R \subseteq U_R \mid L = \text{Ker } s \text{ for some element } s \in S\} = \{L_R \subseteq U_R \mid U/L \hookrightarrow U\}.$

The next theorem is an improvement upon a result of Gupta-Varadarajan [6, Proposition 5.3].

Theorem 4.3. $_{S}M^*$ is noetherian if and only if $\mathscr{C}_{U}(M)$ is artinian, that is, M_R satisfies the d.c.c on U-closed submodules.

Proof. First, assume that ${}_{S}M^*$ is noetherian. Since each $L \in \mathscr{C}_U(M)$ satisfies $L = \operatorname{ann}_M \operatorname{ann}_{M^*} L$ by Lemma 1.1, any strictly descending chain of $\mathscr{C}_U(M)$ induces a strictly ascending chain of S-submodules of M^* . Hence $\mathscr{C}_U(M)$ has to be artinian.

Next, assume that $\mathscr{C}_U(M)$ is artinian. Let $X_1 \subset X_2 \subset X_3 \subset \cdots$ be any strictly

ascending chain of finitely generated S-submodules of M^* . According to Lemma 3.3 we have $X_i = \operatorname{ann}_{M^*} \operatorname{ann}_M X_i$ for each *i*. Hence we get a strictly descending chain of $\mathscr{C}_U(M)$ as follows:

 $\operatorname{ann}_{\mathcal{M}} X_1 \supset \operatorname{ann}_{\mathcal{M}} X_2 \supset \operatorname{ann}_{\mathcal{M}} X_3 \supset \cdots$

Hence ${}_{S}M^*$ satisfies the a.c.c. on finitely generated submodules. Therefore ${}_{S}M^*$ is noetherian.

Corollary 4.4 (Harada-Ishii [7]). S is left noetherian if and only if $\mathscr{C}_U(U)$ is artinian, that is, U_R satisfies the d.c.c. on U-closed submodules, i.e., $\{L_R \subseteq U_R | L = \operatorname{ann}_U X$ for some subset X of S}.

Theorem 4.5. $_{S}M^{*}$ is of finite length if and only if $\mathscr{C}_{U}(M)$ is noetherian and artinian, that is, M_{R} satisfies the a.c.c. and d.c.c. on U-closed submodules.

Proof. First, assume that ${}_{S}M^{*}$ is of finite length. Then by Theorem 4.3 $\mathscr{C}_{U}(M)$ is artinian. Next, according to Lemma 1.1 any strictly ascending chain of $\mathscr{C}_{U}(M)$ induces a strictly descending chain of S-submodules of M^{*} . Since ${}_{S}M^{*}$ is artinian, $\mathscr{C}_{U}(M)$ has to be noetherian. Conversely, assume that $\mathscr{C}_{U}(M)$ is noetherian and artinian. Then ${}_{S}M^{*}$ is noetherian and coperfect by Theorem 4.3 and 4.1, respectively. So ${}_{S}M^{*}$ is of finite length.

Remark. For $M, U \in \text{mod}-R$ we put $S = \text{End}(U_R)$ and ${}_SM^* = {}_S\text{Hom}(M_R, U_R)$. Let us consider the following conditions.

- (a) length $_{S}M^{*} < \infty$.
- (b) $\mathscr{C}_U(M)$ is noetherian and artinian.
- (c) M_R has a U-composition series.

If $U \in \Psi(U)$, (a) and (b) are equivalent (Theorem 4.5). If $M \in \Psi(U)$, (b) and (c) are equivalent (Theorem 2.6). And, if $U, M \in \Psi(U)$, all three conditions are equivalent, and in addition we have length ${}_{S}M^* = U$ -length M_R (Theorem 2.6, 4.5 and 3.4).

Corollary 4.6. S is left artinian if and only if $\mathscr{C}_U(U)$ is noetherian and artinian, that is, U_R satisfies the a.c.c and d.c.c. on U-closed submodules. In fact, we have

length $_{S}S = U$ -length U_{R} .

Corollary 4.7. Let U be a quasi-injective cogenerator in mod-R with $S = \text{End}(U_R)$. And let us set $_{S}M^* = _{S}\text{Hom}(M_R, U_R)$ for each $M \in \text{mod-}R$. Then we have the following assertions.

- (1) $_{S}M^{*}$ is noetherian if and only if M_{R} is artinian.
- (2) $_{S}M^{*}$ is of finite length if and only if so is also M_{R} .
- (3) S is left noetherian if and only if U_R is artinian.
- (4) S is left artinian if and only if U_R is of finite length. Moreover, we have

length $_{S}S$ = length U_{R} .

References

- [1] G. Azumaya, M-projective and M-injective modules, Unpublished.
- [2] J.-E. Björk, Rings satisfying a minimum condition on principal ideals, J. Reine Angew. Math. 236 (1969) 112-119.
- [3] C. Faith, Injective Modules and Injective Quotient Rings, Lecture Notes in Pure and Applied Math. 72 (Marcel Dekker, New York, 1982).
- [4] J. Golan, Localization of Noncommutative Rings, Lecture Notes in Pure and Applied Math. 30 (Marcel Dekker, New York, 1975).
- [5] O. Goldman, Elements of noncommutative arithmetic I, J. Algebra 35 (1975) 308-341.
- [6] A.K. Gupta and K. Varadarajan, Modules over endomorphism rings, Comm. Algebra 8 (1980) 1291-1333.
- [7] M. Harada and T. Ishii, On endomorphism rings of Noetherian quasi-injective modules, Osaka J. Math. 9 (1972) 217-223.
- [8] R.W. Miller and M.L. Teply, The descending chain condition relative to a torsion theory, Pacific J. Math. 83 (1979) 207-219.
- [9] B. Stenström, Rings of Quotients, Grundl. Math. Wiss. 217 (Springer, Berlin, 1975).