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Introduction

Let R be an associative ring with identity and let us denote by mod-R the category
of all unital right R-modules. For each hereditary torsion theory 7 for mod-R and
each M emod-R Goldman introduced in [5] the concept of a 7-composition series
of M as a generalization of composition series. And it was shown in [5] that M has
a 7-composition series if and only if M satisfies the a.c.c. and d.c.c. on 7-closed
submodules, and all 7-composition series of M, if there exist, have the same length.
Any hereditary torsion theory for mod-R is defined (i.e., cogenerated) by some
injective right R-module; so if 7 is cogenerated by an injective right R-module E,
then any r-composition series of M can be regarded as a composition series relative
to a module E.

In this paper for each (not necessarily injective) right R-module U we will
introduce the concept of a U-composition series of any right R-module M. And we
will generalize those results which have been obtained in [5]. In Section 2 we will
show that when U is M-injective, M has a U-composition series if and only if M
satisfies the a.c.c. and d.c.c. on U-closed submodules, i.e., {Lg C Mg|M/L is U-
torsionless}, and all U-comosition series of M have the same length (Theorem 2.6
and 2.8, respectively). Moreover, if U is a quasi-injective, M-injective right R-
module with endomorphism ring S=End(Ug), we will show in Section 3 that there
exists a kind of mutual relation between U-composition series of M and composition
series of (Hom(Mpg, Ug). In particular, it will be proved that My has a U-com-
position series of length » if and only if (Hom(Mpg, Ug) has a composition series
of length n (Theorem 3.4). And in Section 4 we will show some necessary and
sufficient conditions for gHom(Mpg, Ug) to be coperfect, noetherian, and of finite
length, respectively, in case U is a quasi-injective right R-module with S=End(Uy)
(Theorem 4.1, 4.3 and 4.5, respectively).
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1. Preliminaries

For any hereditary torsion theory 7 for mod-R and any M e mod-R a chain of
R-submodules

M=My,DM,>---DM,=T. (M)

where T.(M) denotes the 7-torsion submodule of M, is called a r-composition
series of M if M;_,/M, is t-cocritical, i.e., M;_,/M; is t-torsionfree and any proper
homomorphic image of M;_,/M, is t-torsion for i=1,...,n.

For M,Uemod-R, M is said to be U-torsion if Hom{(Mpg, Ug)=(0), and M is
said to be U-torsionless if Mz [] Ug (a direct product of copies of U). Clearly if
M is U-torsion and N is U-torsionless, then Hom(Mpz, Ng) =(0). An R-submodule
L of M is said to be a U-closed submodule of M if M/L is U-torsionless. The next
lemma can be proved without much difficulty.

Lemma 1.1. For L,M, Uemod-R with L C M let us set M*=Hom(Mpg, Ug). Then,
L is a U-closed submodule of M if and only if
L=anny X={meM)|f(m)=0 for all fe X}
for some subset X of M*, in fact,
L =annyanny. L
={m eM|f(m) =0 for all fe M* such that f(m’)=0 for all m’eL}.
Hence L =ann,, anny. L is smallest among all U-closed submodules of M which

contain L.

Throughout this paper 7,,(M) always denotes ann,, M*={m e M | f(m) =0 for all
feM*}, where M*=Hom(Mg, Ug). According to Lemma 1.1, ty(M) is the
smallest U-closed submodule of M. A chain of R-submodules of M,M;DM,D>---D
M, is said to be a U-chain of length n if M,_,/M; is not U-torsion for i=1,...,n.
If M has a U-chain of length n, then we denote it by U-dim Mz=n. If there is not
any U-chain of length n in M, we denote it by U-dim Mz 2n. If U-dim My=n and
U-dim Mp2n+ 1, then we denote it by U-dim My =n.

Definition. A non-zero right R-module V is said to be U-cocritical if V is U-torsion-
less and any proper homomorphic image of V is U-torsion. A chain of R-sub-
modules of M

M=M,DOM,>---OM,=1y(M)

is called a U-composition series of M if M;_,/M; is U-cocritical for i=1,...,n.

In case U is a cogenerator in mod-R, V is U-cocritical if and only if V is simple.
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Hence in such case a U-composition series of M is nothing but a composition series
of M.

As usual, M is said to be N-injective if any R-homomorphism of any R-sub-
module of N into M can be extended to an R-homomorphism of N into M.

Notation. Y(M)={Nemod-R|M is N-injective}.

M is said to be quasi-injective if and only if M e ¥(M), and M is injective if and
only if Y(M)=mod-R. The next lemma is very useful.

Lemma 1.2 (Azumaya [1]). ¥(M) is closed under taking submodules, homomorphic
images and direct sums.

Throughout this paper any homomorphism will be written on the side opposite
the scalars and End(Mp) denotes the endomorphism ring of M for each M€ mod-
R. Thus, if S=End(My), we can regard M as a left S-module for each M € mod-R.
And XCY (Y DX) always implies XC Y and X#Y for any two sets X and Y.

2. U-composition series
Throughout this section we assume that every module is a right R-module.

Lemma 2.1. We have the following assertions.

(1) Let (0)— X —Y be any exact sequence with Y € Y(U). If Y is U-torsion, then
so is X.

) If Xe P(U), then ty(X) is U-torsion.

(3) Let 0)~ X5 Y%,z —(0) be any exact sequence with Ye ¥Y(U). If X and
Z both are U-torsionless, then so is Y.

Proof. (1) Since U is Y-injective, we get the exact sequence Hom(Yy, Ug)—
Hom(Xg, Ug)—(0). Since Hom(Yg,Ugr)=(0) by the assumption, we have
Hom(Xg; Ug) =(0), as desired.

2) If ty(X) is not U-torsion, there is a non-zero R-homomorphism
S:1y(X)—U. Since U is X-injective, f can be extended to A : X — U. Then there is
an element x in (X)) such that h(x) #0. This contradicts 7 (X)=anny X*, where
X*=Hom(Xg, Ug).

(3) Let y be any non-zero element of Y. If ¢(y) #0, there is an R-homomorphism
h:Z - U such that h¢(y)#0. Hence f=h¢:Y - U carries y onto a non-zero ele-
ment of U. Next, assume ¢(»)=0. Then y e Ker ¢ =Im y. Hence there is an element
x in X such that w(x)=y. Since X is U-torsionless, there is an R-homomorphism
g:X—-U such that g(x)+0. Then, since U is Y-injective, there is an R-homo-
morphism f:Y—U such that g=fy. Therefore f(y)=/fw(x)=g(x)+#0. Thus, we
conclude that Y is U-torsionless.
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Lemma 2.2. Let Me ¥Y(U). If
(a) M,DOM,>---DM,

is any U-chain of length n in M, then there is a chain of U-closed submodules M{
of M with length n as follows:

(b) MDM{D---DOM,.

Proof. Let us put My/M,=1,(M/M,). Then M/Mj is U-torsionless. Since My,/M,
is not U-torsion, so isn’t My/M,; by Lemma 1.2 and (1) of Lemma 2.1. Next, let
us put M;/M;=1y;(My/M,). Then M,|/M,CM;/M, since Hom((My/M,)g, Ug) #
(0), and My/Mj is U-torsionless. Since M/M; € ¥(U) by Lemma 1.2, we can easily
verify that M; is U-closed in M by using (3) of Lemma 2.1. And, since M, /M, is
not U-torsion, so isn’t M{/M, by the same reason as above. let us put M,/M,=
1y(M,/M,). Then M,/M,CM; /M, since Hom((M;/M,)g, Ug) # (0), and M,/Mj, is
U-torsionless. Therefore, since M/M, € ¥(U) by Lemma 1.2, and since M,/M, and
M/M; each are U-torsionless, M, is U-closed in M by (3) of Lemma 2.1. By re-
peating this argument, if we put M;/M;=1,(M;_,/M,) for i=1,...,n, at last we
have a chain MgDM|D--DM, such that M/ is a U-closed submodule of M for
each i.

Making use of Lemma 2.2, we can easily verify that when ¥V is U-torsionless and
Ve W(U), V is U-cocritical if and only if U-dim Vz=1.

Lemma 2.3. Let M be a U-torsionless right R-module which belongs to Y(U) and
let N be a non-zero R-submodule of M. Then we have the following assertions.
(1) If M is U-cocritical, so is N.
(2) If M/N is U-torsion and N is U-cocritical, then M is U-cocritical, too.

Proof. (1) In this case U-dim M =1. Since N is U-torsionless, clearly U-dim N=1.
On the other hand, since Ne ¥(U), N is U-cocritical.

(2) We want to show U-dim Mp=1. Suppose U-dim Mz=2. Then there is a
chain of length 2, M, > M, DM, such that each M; is U-closed in M by Lemma 2.2.
Let us put N;=NNM; for i=0,1,2. Since N/N;=N/(NNM;)=(N+ M;)/M; and
M/M; is U-torsionless, N/N; is also U-torsionless. Since U-dim Np=1 by the
assumption, either N,=N, or N, =N, holds. Now, assume N,=N,. Then

My/M;=(My/Ny)/(M,/Ny) = (My/ (NN Mp))/ (M, /(N N My))
=((N+Mp)/N)/((N+M)/N)=(N+ My)/(N+ M,).

And, since M/(N+ M,) € ¥(U) by Lemma 1.2 and M/(N + M,) is U-torsion by the
assumption, My/M, (=(N+ M,)/(N+ M,)) is also U-torsion by (1) of Lemma 2.1.
But, since M,/M, is U-torsionless, we get M,=M,;, which is a contradiction.
Similarly, N; =N, also induces a contradiction. Hence we have U-dim Mp=1, and
so M is U-cocritical.
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For M emod-R let us denote by A M) the modular lattice consisting of all R-
submodules of M. For each Le ¥(M) let us put L°/L=1y;(M/L). Then L® is
smallest among all U-closed submodules of M which contain L, that is, L°=
ann,, anny. L, where M*=Hom(Mp, Uy), according to Lemma 1.1. Hence L°=L
if and only if L is a U-closed submodule of M. And the intersection of an arbitrary
family of U-closed submodules of M is again U-closed in M. Indeed, if {L,};.4is a
family of U-closed submodules of M, there is an R-monomorphism: M/ ﬂ reala™
I1,.,M/L;. But, since [],_, M/L, is U-torsionless, so is also M/ﬂ/Ie 4Li- That
is, ), L1 is U-closed in M.

Lemma 2.4. Let Me WY(U). If L and N are R-submodules of M, then we have
L*NN°=(LNN)".

Proof. Since LONNC L, (LNN)°c L®. Similarly, (LNN)°C N¢. Hence (LNN)°C
L°NN°-.

Next, we want to show first L,NLSC(L;NL,)° for any two R-submodules
L, and L, of M. Let xeL,NLS. Define a map y:(L,+L,)/L,~M/(L;NL,)
by setting w(x;+L,)=x,+L,NL, for all x,eL,. And let ae (M/(L;NL,))*=
Hom((M/L,N\L,))g, Ug). Since xe LiNLSCL,, x+L,NL,=w(x+L,). Then we
have

a(x+LiNL,)=ay(x+L,)=0.

For, suppose ay(x+ L,)#0. Since U is M/L,-injective by the assumption and
Lemma 1.2, ay can be extended to 8 : M/L,— U. Hence f(x+ L,)=ay(x+ L,)#0.
That is, x+L,¢anny,,; (M/L,)*=L5/L,, where (M/L,)*=Hom((M/L,)g, Ug),
and so x ¢ L5, which contradicts the choice of x. Therefore a(x+ L, NL,)=0 for all
a € (M/(LiNL,))*. That is to say,

x+L1 an € annM/(Llan)(M/(Ll an))*= (Ll an)c/(Ll an).

Thus, we conclude x e (L;NL,)°. Hence we have L,NLC(L,NL,)S, as desired.

Now, putting L;=N and L,=L, we get LXNNC(LNN)° and so (L°NN)°C
(LNN)°. Next, putting L, =L and L,=N, we get LNN°C (L°*NN)°. Therefore
we have that L°XNAN°C(LNN)® and so L°NN°=(LNN)°. Thus, the proof of
Lemma 2.4 is completed.

Let us denote by % (M) the set of all U-closed submodules of M, that is, let us

set €y(M)={LpCMg|L*=L}. Since ¢,(M) is closed under taking intersections,
we can give a complete lattice structure to %y (M) by setting

A{L}=NL and V {Ll}=( ) Ll>
AeA A€eA A€eA A€EA

for every subset {L,},c 4 of €y(M). Moreover, we have the next proposition.
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Proposition 2.5. Let Me ¥Y(U), that is, let U be M-injective. Then %y(M) is a
complete modular lattice.

Proof. First, notice that #(M) is a modular lattice. Let K, L, Ne €,(M) with
K c L. Then we have that

LAKVN)=LN (K +N)
=(LNEK+N)) by Lemma 2.4
=(K+(LNN)¥ =KV (LAN).

Hence #y(M) is modular, as desired.

Thus, we have seen that ¢, (M) is a complete modular lattice which contains the
greatest element M and the smallest element 7,(M) in case U is M-injective. In
general, if # i1s a modular lattice with greatest element 1 and smallest element 0, any
maximal chain linking 1 to 0 in Zis called a composition chain of .¥. Next, let
M e Y(U). Then any U-composition series of M,M=MyDM,D:-- DM, =1y(M) is
a composition chain of #;(M). Indeed, since M/M;, M;_,/M; e ¥(U) by Lemma
1.2, we can easily show that M, e ¢,(M) for each i by using (3) of Lemma 2.1
repeatedly and that this chain is maximal in ¢ (M) by using U-dim M;_,/M;=1
for each i. Conversely, we can also show that any composition chain of %,(M) is
a U-composition series of M by using Lemma 2.2 and (3) of Lemma 2.1.

Theorem 2.6. Let Me WY(U). Then M has a U-composition series if and only if
€u(M) is noetherian and artinian, that is, M satisfies the a.c.c. and d.c.c. on U-
closed submodules.

Proof. This follows from Proposition 2.5 and [9, Chap. III Proposition 3.5].

Corollary 2.7 (Goldman [5]). Let T be any hereditary torsion theory for mod-R and
let Memod-R. Then M has a t-composition series if and only if M satisfies the
a.c.c. and d.c.c. on t-closed submodules.

Theorem 2.8 (A generalization of the Jordan-Hoélder Theorem). Let Me ¥(U).
Then any two U-composition series of M, if there exist, are equivalent in € ;(M).
That is to say, if

Mgp=MyDOM,>::-DM,=1y(M)
and
MR=N03N13”'DN,=Tu(M)

each are U-composition series of M, then we have that n=r and there is a permuta-
tion @ of {1,...,n} such that the intervals [M;, M;_,] and [Ny, No;,-1] are projec-
tive in €y(M) in the sense of [9, Chap. 111} for i=1,...,n.
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Proof. This follows from Proposition 2.5 and [9, Chap. III Corollary 3.2].

Remark. If we consider the case where U is an injective cogenerator in mod-R in
Theorem 2.8, we get the classical Jordan-Hoélder Theorem.

Corollary 2.9 ([S]). Let t be any hereditary torsion theory for mod-R and let
Memod-R. Then any two t-composition series of M, if there exist, are equivalent.
In particular, all T-composition series of M have the same length.

Proof. If 7is cogenerated by an injective right R-module E, any 7-composition series
is nothing but an E-composition series.

Let M e ¥(U). Then, if M has a U-composition series of length n, we will denote
it by U-length Mz =n. If M has no U-composition series, we will denote it by U-
length My = oo, If U-length My =n< oo, we will call M a module of finite U-length.
Next, let 7 be a hereditary torsion theory for mod-R and let M emod-R. Then, if
M has a 7-composition series of length n, we will denote it by 7-length Mz =n and
call M of finite 7-length. Otherwise, it will be denoted by 7-length Mz = co.

Theorem 2.10. Let M e Y(U). If M has a U-composition series of length n, then any
U-chain of M has finite length t and t <n. In particular, any chain of U-closed sub-
modules of M can be refined to a U-composition series of M.

Proof. Since U-length M, =n, the length of any composition chain of %, (M) is
equal to n by Theorem 2.8. Let LoD L;D---DL, be any U-chain of M. Then there
exists a chain of length ¢, LgDL;D---DL;in €y(M) by Lemma 2.2. According to
[9, Chap. III Proposition 3.3], this chain can be refined to a composition chain of
¢y(M). Therefore we get t<n.

Theorem 2.11. Let M e W(U). M has a U-composition series of length n if and only
if there is a maximal U-chain of length n in M. That is to say, U-length Mp=
U-dim M.

Proof. Necessity. If M=MyDM,;D--- DM, =1,4(M) is a U-composition series of
length n, this is a U-chain of length n. On the other hand, according to Theorem
2.10 this is a maximal U-chain of M.

Sufficiency. Assume that there is a maximal U-chain of length n in M; say

(a) MyDM;D---DM,.
Then by Lemma 2.2 we get a chain of U-closed submodules M; of M as follows:
(b) MO M{D---DM,.

Since (a) is maximal, M/M, is U-torsion; so M/Mj is U-torsion, too. This as well
as the fact that M, is U-closed in M, implies M = M,. Next, let us put Ny=M,NM;.
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Then M,/Ny=(M,+Mj)/M;, which is U-torsionless and not equal to (0). For,
if (My+M;)/M{=(0), MyCM;. And hence M/M, is also U-torsion. So we get
M/ =M, which is a contradiction. Next, since U-dim M,/M, =1 by the maximality
of (a), U-dim My/Ny=1. So U-dim(M,+ M;)/M,=1. Therefore (My+ M,)/Mj is
U-cocritical. On the other hand, since My/M,=1y,(M/M,) is U-torsion by (2) of
Lemma 2.1, My/(M,+ Mj) is U-torsion, too, as a homomorphic image of M,/M,.
Hence M,/M| is U-cocritical by (2) of Lemma 2.3. Similarly, if we put
N=M,NM;, (M,+M;)/M, (=M,/N) is U-cocritical by the same reason as
above. And M|/M,=1,(M,/M,) is U-torsion by (2) of Lemma 2.1. And, since
M| /(M, + M) is a U-torsion module as a homomorphic image of M;/M,, M|/M; is
U-cocritical by (2) of Lemma 2.3. Repeating this argument, we have that M;_,/M;
is U-cocritical for i=1,...,n. Next, since M,/(M,Nty(M)) (=M,+ 1y(M))/
ty(M)) is U-torsionless and (a) is maximal, we have M,=M,N7,;(M); so
M, C 1y (M). Since M, is U-closed in M, ty(M)C M,. And, since 1y(M,,_,/M,) =
M,/M,, M, is smallest among all U-closed submodules of M, _, which contain
M,. Hence we have 7,(M)=M,. Therefore M has a U-composition series of
length 7 as follows:

() M=M;OM|>--- DM, =1y(M).
This completes the proof of Theorem 2.11.

Theorem 2.12. Let (0)>A—B 2, C —(0) be any exact sequence of right R-modules
with Be Y(U). Then we have

U-length B = U-length A + U-length Cx.

Proof. First, suppose U-length A =r and U-length C=s. Let
(a) Ty(A)=AyCA,C---CA,=A

and
(b) y(C)=C,CC\C---CC;=C

be U-composition series of A and C, respectively. Let us put A4, j=¢‘1(Cj-) for
Jj=0,1,...,s. Then we get a chain

() Ty(A)=A¢CAC--CA,=ACA,,(CA,,C---CA,,s=B.

Then A;/A;_, and A4, ;/A,, j_, both are U-cocritical for i=1,...,rand j=1,...,s.
Since A;/A;_1, Arij/A,,j—1€ P(U) by Lemma 1.2, we have U-dimA4;/4;_=1=
U-dimA,,;/A,,;_, for all i and all j. Clearly ty(C;) < 1y(C). Next, suppose
xeC; and x¢ 1ty(C;). Then there is an R-homomorphism a:C;— U such that
a(x)#0. Since U is C-injective by Lemma 1.2, a can be extended to 8: Cg — Ug.
Hence x¢ann,C*=1y(C), and so ty(C)C1y(C;). Hence 1y(C))=1y(C).
Now, ¢ induces the R-isomorphism ¢: A, ,,/A—C; with ¢4, ,/A)=1y(C) and
o(ty(A4,,,/A)) =1y(C,) since A, /A € P(U). Thus, we get ty(A,,,/A)=A, /A.
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Hence U-dim A4, , ;/A=U-dim(A4,, /A)/T(A,,,/A)=U-dim(A, , ,/A)/(A,, o/A) =
U-dim C,/Cy=1. Thus,
(C’) Tu(A)=A0CA1C"'CA,CA,+1C"'CA,+S=B

is a maximal U-chain of length r+s. Therefore U-length B=r+s=U-length 4 +
U-length C by Theorem 2.11.

Conversely, suppose U-length B=n. According to Theorem 2.10 and 2.11, U-
length A =r for some integer r<n. Let

(d) Ty(A)=AyCAC---CA, =4
be a U-composition series of 4 and let
) AOCAIC"'CAr=Ar+0CAr+1C'"CAr+s

be a refinement of (d) which is a maximal U-chain of B. Then n=r+s by Theorem
2.11. If we put Z,ﬂ- =A,,;/Afor j=0,1,...,s, then we have a maximal U-chain of
B=B/A as follows:

) (0)=/T,+0C1‘T,+1C"'C/T,+S.

Hence we have U-length C= U-length B=s by Theorem 2.11. Therefore U-
length B=n=r+s= U-length A + U-length C. Thus, the proof of Theorem 2.12 is
completed.

Corollary 2.13. Let M€ ¥(U) and let M be of finite U-length. Then for any two R-
submodules L and N of M we have
U-length(L + N) + U-length(L N N) = U-length L + U-length N.

Proof. Applying Theorem 2.12 to the following two exact sequences

©)—=L—->(L+N)—=(L+N)/L—=(0)
and
O)=LNN->N->N/(LNN)—(0),

we can easily get the required equality.

3. A characterization of modules of finite U-length

In this section we will give a new type of characterization of a module M of finite
U-length in case U is a quasi-injective, M-injective right R-module. For M, U € mod-R
with S=End(Upg) let us set sM*=gHom(Mpg, Ug). As usual, we put

anny, X={meM|f(m)=0 for all fe X}
for any subset X of M* and
anny. L ={fe M*| f(m)=0 for all me L}
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for any subset L of M. Clearly ann,, X is an R-submodule of M and anny. L is an
S-submodule of M*.

Lemma 3.1. Let Ve WY(U). If U-length Vgx=1, then V/ty(V) is U-cocritical.
Proof. It is clear by the assumption and the definition of a U-composition series.

Lemma 3.2. Let U, Ve Y(U) with S=End(Uy) and let sV *=gHom(Vy, Ug). Then,
sV* is simple if and only if U-length Vg=1.

Proof. Sufficiency. The exact sequence (0)— 17y (V)—=> V= V/1y(V)—(0) induces the
exact sequence of left S-modules as follows:

(0)—>Hom((V/7y(V))r, Up)=Hom(Vg, Ug)—>Hom(ty (V)g, Ug)—(0),

because U is V-injective. By (2) of Lemma 2.1, 7y(V) is U-torsion. Hence
Hom(ty(V)g, Ug) = (0). Therefore we have Hom((V/ty(V))g, Ug) =Hom(Vg, Ug).
Now, since Ve Y(U) and U-length Vg=1, V/ty(V) is U-cocritical by Lemma 3.1.
Hence we may assume that V is U-cocritical without any loss of generality. Let
0#a€V* and suppose Ker a#(0). Then Ima=V/W for some non-zero sub-
module W of V. Since V is U-cocritical, ¥/ W is U-torsion. On the other hand, Im «
is U-torsionless as a submodule of U. Hence Im ¢ =(0), which contradicts a#0.
Hence we have Ker ¢ = (0). That is, every non-zero R-homomorphism of V into U
is a monomorphism. Now, let @, € V* with a#0. Since Uy is quasi-injective,
there is an R-homomorphism s: U— U such that 8=sa. Hence g V*=Sa. That is,
sV'* is simple. :

Necessity. Assume that ¢V* is simple. Then Vj; has exactly two U-closed sub-
modules V=ann,(0) and 7y(V)=anny, V* by Lemma 1.1. Hence U-length V=1
by Lemma 2.2. This completes the proof of Lemma 3.2.

Lemma 3.3. Let U be a quasi-injective right R-module with S=End(Uyg) and let us
set (M*=gHom(Mp, Ug) for each Me mod-R. Then for any finitely generated
S-submodule X of M* we have

X =anny. ann,, X.

Proof. Since ¢X is finitely generated, we can put X=Y7_, Sq;, where a; e M* for
i=1,...,n. Define a map ¢ : Mg— @" Uy (the direct sum of n copies of Ug) by
setting @¢(m)=(a;m, aym,...,a,m) for all meM. Then Ker ¢ =ann,, X. Hence
¢ induces the R-monomorphism h:M/anny X— @"U. Now, clearly X ¢
ann,,. anny, X. Next, we want to show anny.anny, X C X. Let # be any element of
ann,. ann,, X. And, define f: M/anny, X — U by setting f(m + anny, X) = f(m) for
all me M. Then we have the commutative diagram with exact row as follows:
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h n
(0)>M/anny, X —— DU

f

U
because @" Ue W(U) by Lemma 1.2. Since we can regard

Hom(é Up UR> = @Hom(Up, Ug) = B,

we are able to put g=(sy, 5,, ..., s,), where s;€ S for each i. Hence we have that
B(m) =f(m + anny, X) =gh(m + ann,, X)

=go(m) =glaym,aym, ..., a,m)

=Y s;a;(m) for all me M.
i=1
Hence
B=1Y siaie ¥ Sa;=X.
i=1 i=1

Thus, we get anny. anny, X C X. Therefore we have X =anny,. ann,, X.

We are now ready to prove our main result.
Theorem 3.4, Let U, M e Y(U), that is, let U be a quasi-injective, M-injective right
R-module with S=End(Ug). And let us set {M*=gHom(My, Uy). If

(a) MR=M()DM13“'DM"=Tu(M)
is a U-composition series of length n, then

(a*) 0)=X,CX,C---CX,=sM*

where X;=anny. M; for each i, is a composition series of length n. Then if we put
M;=anny, X; for each i,

@**) Mr=MyDM|D---DM,=1,7(M)

is equal to (a).
Conversely, if

(b) (0)#XOCX1C"'CXn=SM*
is a composition series of length n, then
(b*) MR=M03M13"'DMn=TU(M)

where M;=anny, X; for each i, is a U-composition series of length n. Then if we
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put X;=anny. M; for each i,
(b**)  (0)=X,CX|C-CX,=sM*

is equal to (b).
In particular, we have

length ¢M* = U-length Mp.

Proof. First, assume that a chain (a) is a U-composition series of length n. Since
U is M-injective, we can easily see that every M; is U-closed in M by using (3) of
Lemma 2.1 repeatedly. Hence M;=ann,,ann,.. M; for i=0,1,...,n according to
Lemma 1.1. So, if we put X; =ann,,. M; for each i, we get a chain of S-submodules
of M* with length n as follows:

@*  (0)=X,CX,C--CX,=gM*

Next, we want to show that (a*) is a composition series of ¢M*. Let us de-
fine a map y: X;—>Hom((M;_,/M;)g, Ug) by setting [(V)y}(m + M;)=v(m) for all
v€X; and all me M;_,. Then clearly y is an S-homomorphism and Ker y = X;_,.
Hence y induces the S-monomorphism ¥ :X;/X;_;—Hom((M;_,/M))g, Ug).
But, since M;_ ,/M;e P(U) by Lemma 1.2 and M;_,/M; is U-cocritical,
sHom((M;_,/M;)r, Ug) is simple for each i by Lemma 3.2. Therefore g(X;/X;_,)=
sHom((M;_,/M))p, Ug); so (X;/X;_,) is simple for each i. Hence (a*) is a com-
position series of gM*. And, since M;=ann,, X; =ann,,ann,. M; =M, for each i,
(a**) is equal to (a).

Conversely, assume that a chain (b) is a composition series of ¢M* with length
n. Then, since every X; is a finitely generated S-submodule of M*, we have
X;=anny.anny X; for each i by Lemma 3.3. So, if we put M;=anny X; for
i=0,1,...,n, we get a chain of length n linking M to 7,(M) as follows:

(b*  M=MydDM,>---dM,=1y(M).

Next, we want to show that M;_,/M;is U-cocritical for each i. For this purpose we
will first show that g(annpe M;) (=sHom((M;_,/M;)g, Ug)) is simple, where

= 1=Hom((M;_,)g, Ug). Let a, B anny;» M; with @+#0. Since U is M-injective,
e (resp. f) can be extended to @& (resp. B) of M*. Then, since &, f € anny,. M; = X;
and @ ¢ anny.. M;_;=X;_,, and since g(X;/X;_) is simple, there exists an element
s of S such that f—s@e X;_,=anny.M;_,. Hence (B—sa)M;_,=(B—s@)M;_,=
(0). Therefore we have B=sa; so s(annye M;)=Sa. Thus, g(annps M), and
hence sHom((M;_,/M;)g, Uy) is simple, as desired. Hence U-length M;_,/M;=1
by Lemma 3.2. On the other hand, since M; is U-closed in M by Lemma 1.1,
M;_,/M; is U-torsionless. Therefore M;_,/M; is U-cocritical for each i. Thus, (b*)
is a U-composition series of M. Moreover, since X;=ann,. M; =ann,,. ann,, X; =
X, for each i, (b**) is equal to (b). This completes the proof of Theorem 3.4.

Corollary 3.5. Let U,S,M and M* be the same as in Theorem 3.4. Suppose
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U-length Mg =n<o. Then we have the following statements.
(1) For any R-submodule L of M let us put X =anny.L. Then

s(M/L)*=sHom((M/L)g, Up)=sX

and

U-length(M/L) =length ¢ X.
Moreover,

sL*=gHom(Lg, Ug)=s(M*/X)
and

U-length L =length y(M*/X)=n-length ¢ X.
(2) For any S-submodule X of M* let us put L =anny, X. Then
sX=g(M/L)*=sHom((M/L)g, Ug)

and

length ¢ X = U-length(M/L)g =n— U-length L.
Moreover

s(M*/X)=gL*=sHom(Lg, Ug)
and.

length (M*/X)= U-length Lp.

Proof. (1) It is well known that g(M/L)*=sHom((M/L)g, Ug)=gs(anny. L) = ¢ X.
Since M/Le ¥Y(U) by Lemma 1.2, we get U-length(M/L)z =length ¢(M/L)*=
length ¢ X according to Theorem 3.4. Next, the exact sequence

O)>L-M-M/L—(0)
induces the exact sequence
0)—=s(M/L)*— sM*—sL*—(0),

because U is M-injective. Hence ¢L*= (M*/X). Slnce Le¥(U) by Lemma
1.2, we get U-length Lg=Ilength ¢L*=Ilength ¢(M*/X)=n—length ¢X by using
Theorem 3.4 again.

(2) According to our assumption and Theorem 3.4 we have length jM*=n.
Hence (X is finitely generated; so X=anny«L by Lemma 3.3. Therefore
sX=g(M/L)* and ¢L*=(M*/X) by (1) of this corollary. Hence by Theorem 3.4
and Theorem 2.12 we have length ¢X = U-length(M/L)g=n— U-length L and
length ¢(M*/X’) =length ¢ L*= U-length Lp.

Corollary 3.6. Let t be a hereditary torsion theory for mod-R which is cogenerated
by an injective right R-module E with S=End(EgR). And let us set
sM*= Hom(Mpy, Eg) for each Memod-R. Then there is a one-to-one cor-
respondence between t-composition series of Mg and composition series of ¢M*,
under which if
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(a) Mr=MyDM;D---DM,=T,(M)
and
(b) (0)=X0CX1C---CX,_=SM*

are the corresponding chains, they satisfy the equality n=r and the conditions
M;=anny, X; and X;=anny. M; for all i and all j. Therefore we have

length ¢ M* = t-length Mp.

Proof. Any r—compositibn series of M is nothing but an E-composition series of M
and 7-length M = E-length M for each M emod-R. Hence this is a direct conse-
quence of Theorem 3.4.

Corollary 3.7. Let U be a quasi-injective, M-injective cogenerator in mod-R with
S=End(Ug). And let us set {M*=gHom(Mpg, Ug). Then we have

length ¢M*=length M.

Proof. Since U is a cogenerator in mod-R, every U-composition series is nothing but
a composition series. Hence by Theorem 3.4 we have

length ¢M*= U-length M= length Mp.

An (a quasi-) injective right R-module U is said to be 4 (resp. X) -(quasi-) injec-
tive if R satisfies the d.c.c. (resp. a.c.c.) on U-closed right ideals (refer to [3]).
Miller-Teply proved in [8] that every A-injective module is 2-injective. Moreover,
it was shown in Faith [3] that every A-quasi-injective module is 2-quasi-injective.

Corollary 3.8 (Faith [3, Proposition 8.1]). (1) Let U be a quasi-injective right
R-module with S=End(Ug). Then the following statements are equivalent.
(@) sU is of finite length.
(b) U is noetherian.
(c) Uy is A-quasi-injective, that is, ¥y(R) is artinian.
(2) In particular, if Uy is an injective module which cogenerates a hereditary
torsion theory t, the following statements are equivalent.
(a) length jU=n<oo. '
(b) U is noetherian.
. (c) Uy is A-injective, that is, €y(R) is artinian.
(d) t-length Rg=n<oo,

Proof. (1) Since each I € € (R) satisfies ] =anng anny I/ by Lemma 1.1, (b) implies
(c). Next, assume (c). Since every finitely generated S-submodule W of U satisfies
W =ann, anngy W by Johnson-Wong’s theorem (a special case of Lemma 3.3 for
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M=R) and since Uy, is also 2Z-quasi-injective by Miller-Teply-Faith’s theorem, (c)
implies (a). (a)=(b) is trivial.

(2) This follows directly from (1) of this corollary and a special case of Corollary
3.6 for M=R.

A ring R is said to be right upper (resp. lower) Levitzki if R satisfies the a.c.c.
(resp. d.c.c.) on right annulets. Similarly, a left upper (resp. lower) Levitzki ring is
defined. A lower and upper Levitzki ring is called Levitzki for short.

Corollary 3.9. If there exists a faithful, A-quasi-injective module in mod-R, then R
is a subring of a semi-primary Levitzki ring. If, furthermore, it is balanced, R itself
is a semi-primary Levitzki ring.

Proof. This follows from Corollary 3.8 and [3, Theorem 6.2].

In what follows, we will study endomorphism rings of U-torsionless modules
of finite U-length under some additional conditions.

Lemma 3.10. Let U, M e mod-R with M U-torsionless and let S=End(Ug). Then
there is a ring monomorphism:

Hom(Mpg, Mg)—Hom(sHom(Mg, Ur), sHom(Mp, Ug)).

Proof. Define a map y:Hom(Mg, Mg)—Hom(sHom(Mpg, Ug), sHom(Mp, Ug))
by setting (/)[w(a)]l =fa for all @€ Hom(My, Mg) and all fe Hom(Mp, Ug). Then
we can easily verify that y is a ring homomorphism. Next, suppose y(a)=0. Then
fa=0 for all fe Hom(My, Ug). Since U cogenerates M, this implies a=0. Hence
w is a ring monomorphism.

Theorem 3.11. Let U,M e P(U) with M U-torsionless. Then we have the following
assertions.

(1) If M is U-cocritical, then the endomorphism ring of My is embeddable in a
division ring.

(2) If U-length My < oo, then the endomorphism ring of My is embeddable in a
semi-primary Levitzki ring.

Proof. Let S=End(Ug).

(1) Since M is U-cocritical, sHom(Mpg, Ug) is simple by Lemma 3.2. Hence
Hom(sHom(Mp, Ug), sHom(Mpg, Ug)) is a division ring. Therefore this result is
due to Lemma 3.10. _

(2) Since U-length Mz <o, sHom(Mpg, Ug) is of finite length by Theorem 3.4.
Hence Hom(sHom(Mpg, Ug), sHom(Mg, Ug)) is a semiprimary Levitzki ring by [3,
Theorem 6.2]. Thus, this follows from Lemma 3.10.
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Corollary 3.12. Let t be a hereditary torsion theory for mod-R and let M be a
7-torsionfree right R-module. Then we have the following assertions.

(1) If M is 1-cocritical, then End(My) is embeddable in a division ring (see [4,
Proposition 18.2]).

(2) If t-length My < oo, then End(Mpy) is embeddable in a semi-primary Levitzki
ring.

4. Modules over the endomorphism ring of a quasi-injective module

Throughout this section let U be a quasi-injective right R-module with
S=End(Ug). For each M emod-R let us set (M*= Hom(Mp, Ug). In this section
we will show some necessary and sufficient conditions for ¢M* to be coperfect,
noetherian, and of finite length, respectively. Consequently, we will give some
necessary and sufficient conditions for S to be right perfect, left noetherian, and left
artinian, respectively. A module My, is said to be coperfect if M satisfies the d.c.c.
on finitely generated R-submodules. It is well known that My is coperfect if and
only if My satisfies the d.c.c. on cyclic submodules (Bjork [2]).

Theorem 4.1. (M* is coperfect if and only if the a.c.c. holds on

{Lr CMg|L=Kera for some a e M*}={LgCMg|M/LcU}.

Proof. Sufficiency. Let
Sa 2 S(s,0) 2 S(s25,0) 2 -+

be any descending chain of cyclic S-submodules of M*, where @ € M* and s;€ S for
each i. Then we have an ascending chain of R-submodules of M as follows:

Ker a c Ker(s,a) C Ker(s,s;a) C ---.
By the assumption there exists an integer n such that
Ker(s,s,_1 - s1@) =Ker(s, 4 jSp4j-1 - 5@)
for all j=1. On the other hand, it holds that
S(8;Si_ 1 -+ 51@) = anDyg« ann(S;S;_ - 5,Q)
= annyys Ker(s;s;_; -*- s,0)
for all integer i=1 by Lemma 3.3. Hence we have
S(s,S,_1 - 5)) = anny Ker(s,s,_, - 5,@)
=anny Ker(sp, jSp1j_1 - 510)

=S(sn+jsn+j—l e 51Q)
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for all j=1. Hence ¢M* satisfies the d.c.c. on cyclic S-submodules. Therefore (M*
is coperfect by Bjork’s theorem.

Necessity. Consider any ascending chain of kernels of elements a; of M* as
follows:

Kera; CKera, CKeraszC---.

Since Uy is quasi-injective, we have the commutative diagram with .exact row as
follows:

@
O)—M/Kera,— U

where @; and @;,; are the R-maps canonically induced by ; and «;, |, respectively.
Hence we have that

@, 1(m)=a;, (m+Ker a;) =s;a;(m+ Ker ;) =s;0;(m)

for all me M. Hence a;, =s;a; € Sa; for all integer i=1. Thus, we get a descend-
ing chain of cyclic S-submodules of M* as follows:

Sa; 250, 2Sa3D -+,

Since sM™* is coperfect, there exists an integer n such that Sa,=Sa, ., ; for all j=1.
Then we can easily verify that

Ker o, = anny,(Sa,) = ann,(Sa, . J=Kera,,;

for all j=1. This completes the proof of Theorem 4.1.

Corollary 4.2. S is right perfect if and only if Uy satisfies the a.c.c. on
{LrC Ur|L =Kers for some element se S} ={LgC Ug| U/LcU}.

The next theorem is an improvement upon a result of Gupta-Varadarajan [6,
Proposition 5.3}.

Theorem 4.3. (M* is noetherian if and only if €y(M) is artinian, that is, Mg
satisfies the d.c.c on U-closed submodules.

Proof. First, assume that gM* is noetherian. Since each L € €, (M) satisfies L=
ann,,ann,.. L by Lemma 1.1, any strictly descending chain of ¢, (M) induces a
strictly ascending chain of S-submodules of M*. Hence ¢y, (M) has to be artinian.

Next, assume that €y(M) is artinian. Let X;CX,CX;C--- be any strictly
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ascending chain of finitely generated S-submodules of M*. According to Lemma 3.3
we have X;=anny.anny, X; for each i. Hence we get a strictly descending chain of
€uy(M) as follows:

ann,, X, Dann,, X, Danny X3D---.

Hence ¢M* satisfies the a.c.c. on finitely generated submodules. Therefore ¢M* is
noetherian.

Corollary 4.4 (Harada-Ishii [7]). S is left noetherian if and only if €,(U) is
artinian, that is, Uy satisfies the d.c.c. on U-closed submodules, i.e., {LgC
Ug|L =anny X for some subset X of S}.

Theorem 4.5. (M* is of finite length if and only if ¢,(M) is noetherian and
artinian, that is, My satisfies the a.c.c. and d.c.c. on U-closed submodules.

Proof. First, assume that ¢M* is of finite length. Then by Theorem 4.3 ¢, (M) is
artinian. Next, according to Lemma 1.1 any strictly ascending chain of ¢ (M) in-
duces a strictly descending chain of S-submodules of M*. Since ¢M* is artinian,
¢uy(M) has to be noetherian. Conversely, assume that ¢;(M) is noetherian and
artinian. Then ¢M* is noetherian and coperfect by Theorem 4.3 and 4.1, respec-
tively. So ¢M™* is of finite length.

Remark. For M, Ue mod-R we put S =End(Ug) and ¢M*=¢Hom(Mg, Ug). Let us
consider the following conditions.

(a) length {M*< co.

(b) ¢y(M) is noetherian and artinian.

(c) My has a U-composition series.
If Ue ¥(U), (a) and (b) are equivalent (Theorem 4.5). If M e ¥(U), (b) and (c) are
equivalent (Theorem 2.6). And, if U, M € ¥(U), all three conditions are equivalent,
and in addition we have length ¢M*= U-length My (Theorem 2.6, 4.5 and 3.4).

Corollary 4.6. S is left artinian if and only if ¢;(U) is noetherian and artinian, that
is, Uy satisfies the a.c.c and d.c.c. on U-closed submodules. In fact, we have

length (S= U-length Uk.

Corollary 4.7. Let U be a quasi-injective cogenerator in mod-R with S=End(Uyg).
And let us set {M*=sHom(Mg, Ug) for each Memod-R. Then we have the
Jfollowing assertions.

(1) sM* is noetherian if and only if My is artinian.

(2) sM* is of finite length if and only if so is also Mjy.

(3) S is left noetherian if and only if Uy is artinian.

(4) S is left artinian if and only if Uy is of finite length. Moreover, we have

length ¢S =length Uj.
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